
Problems and Solutions Section 1.4 (problems 1.65 through 1.81) 

1.65 Calculate the frequency of the compound pendulum of Figure P1.65 if a mass mT 

is added to the tip, by using the energy method. Assume the mass of the pendulum 

is evenly distributed so that its center of gravity is in the middle of the pendulum 

of length l. 

 
Figure P1.65 A compound pendulum with a tip mass. 

 

 Solution Adding a tip mass adds both kinetic and potential energy to the system. 

If the mass of the pendulum bar is m, and it is lumped at the center of mass the 

energies become: 

 Potential Energy:               

 

U = 1
2

(− cosθ)mg + (− cosθ)mtg

   = 
2

(1− cosθ)(mg + 2mtg)
 

 Kinetic Energy:             

 

T = 1
2

J θ 2 + 1
2

Jt
θ 2 = 1

2
m2

3
θ 2 + 1

2
mt

2 θ 2

                              = (
1
6

m + 1
2

mt )
2 θ 2

 

 Conservation of energy (Equation 1.51) requires T + U = constant: 

  


2

(1− cosθ)(mg + 2mtg) + (
1
6

m +
1
2

mt )
2 ˙ θ 2 = C  

 Differentiating with respect to time yields:  

 


2

(sinθ)(mg + 2mt g) θ + (
1
3

m + mt )
2 θ θ = 0

      ⇒ (
1
3

m + mt ) θ +
1
2

(mg + 2mt g)sinθ = 0
 

 Rearranging and approximating using the small angle formula sin θ ~ θ, yields: 

 

θ(t) +

m
2
+ mt

1
3

m + mt

g


⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
θ(t) = 0 ⇒ωn =

3m + 6mt

2m + 6mt

g


 rad/s  
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 Note that this solution makes sense because if mt = 0 it reduces to the frequency of 

the pendulum equation for a bar, and if m = 0 it reduces to the frequency of a 

massless pendulum with only a tip mass.   

 

1.66 Calculate the total energy in a damped system with frequency 2 rad/s and 

damping ratio ζ = 0.01 with mass 10 kg for the case x0 = 0.1 m and v0 = 0.  Plot 

the total energy versus time. 

 Solution: Given:  ωn = 2 rad/s, ζ = 0.01, m = 10 kg, x0 = 0.1 m, v0 = 0. 

 Calculate the stiffness and damped natural frequency: 

 

k = mω n
2 =10(2)2 = 40 N/m

ωd =ωn 1−ζ 2 = 2 1 −0.012 = 2 rad/s
 

 The total energy of the damped system is 

E(t ) =
1
2

m ˙ x 2 (t) +
1
2

kx(t)  

 where 
x(t) = Ae−0.02 t sin(2t +φ )

˙ x (t) = −0.02Ae−0.02 t sin(2t + φ) + 2Ae−0.02t cos(2t + φ)
 

 Applying the initial conditions to evaluate the constants of integration yields: 

 

x(0) = 0.1= Asinφ
x(0) = 0 = −0.02Asinφ + 2Acosφ
⇒φ = 1.57 rad,   A = 0.1  m

 

 Substitution of these values into E(t) yields: 
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1.67 Use the energy method to calculate the equation of motion and natural frequency 
of an airplane's steering mechanism for the nose wheel of its landing gear.  The 
mechanism is modeled as the single-degree-of-freedom system illustrated in 
Figure P1.54. 

  
mx

 

r

J
k1

k2

(Steering wheel)

(Tire–wheel
assembly)

 
 The steering wheel and tire assembly are modeled as being fixed at ground for 

this calculation.  The steering rod gear system is modeled as a linear spring and 
mass system (m, k2) oscillating in the x direction.  The shaft-gear mechanism is 
modeled as the disk of inertia J and torsional stiffness k2.  The gear J turns 
through the angle θ such that the disk does not slip on the mass.  Obtain an 
equation in the linear motion x. 

 Solution: From kinematics: x = rθ ,⇒ ˙ x = r ˙ θ  

 Kinetic energy: 22

2
1

2
1

xmJT  += θ  

 Potential energy: 2
1

2
2 2

1
2
1 θkxkU +=  

 Substitute 
r
x=θ : 2

2
12

2
22

2 2
1

2
1

2
1

2
1

x
r
k

xkxmx
r
J

UT +++=+   

 Derivative: 
( ) 0=+
dt
UTd

 

  

 

J
r 2 x x + mx x + k2x x + k1

r 2 x x = 0

J
r 2 + m⎛

⎝
⎞
⎠ x + k2 +

k1

r 2
⎛
⎝

⎞
⎠ x⎡

⎣⎢
⎤
⎦⎥
x = 0

 

 Equation of motion: 
J
r2 + m

⎛ 
⎝ 

⎞ 
⎠ ˙ ̇ x + k2 +

k1

r 2
⎛ 
⎝ 

⎞ 
⎠ x = 0  

 Natural frequency: 

  

ω n =
k2 +

k1

r 2

J
r 2 + m

=
k1 + r 2k2

J + mr 2  
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1.68 Consider the pendulum and spring system of Figure P1.68. Here the mass of the 

pendulum rod is negligible. Derive the equation of motion using the energy 

method. Then linearize the system for small angles and determine the natural 

frequency. The length of the pendulum is l, the tip mass is m, and the spring 

stiffness is k. 

 
Figure P1.68 A simple pendulum connected to a spring 

 

 Solution:  Writing down the kinetic and potential energy yields: 

 

T = 1
2

ml2 θ 2 ,    U = 1
2

kx2 + mgh

                   U = 1
2

kl2 sin2θ + mgl(1− cosθ)
 

 Here the soring deflects a distance lsin θ, and the mass drops a distance l(1 –cosθ). 

Adding up the total energy and taking its time derivative yields: 

 

d
dt

1
2

ml2 θ 2 + 1
2

kl2 sin2θ + mgl cosθ⎛
⎝

⎞
⎠

= (ml2 θ) θ + (kl2 sinθ cosθ) θ − mgl sinθ θ = 0

⇒ ml2 θ + kl2 sinθ cosθ − mgl sinθ = 0

 

 For small θ, this becomes 

 

ml2 θ + kl2θ − mglθ = 0

⇒ θ + kl − mg
ml

θ = 0

             ⇒ω n =
kl − mg

ml
 rad/s

 

 

 

1.69  A control pedal of an aircraft can be modeled as the single-degree-of-freedom 

system of Figure P1.69.  Consider the lever as a massless shaft and the pedal as a 

lumped mass at the end of the shaft.  Use the energy method to determine the 
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equation of motion in θ and calculate the natural frequency of the system.  Assume 

the spring to be unstretched at θ = 0. 

m

l2

l1

k

 

 
  Figure P1.69 

Solution: In the figure let the mass at θ = 0 be the lowest point for potential energy.  
Then, the height of the mass m is (1-cosθ)2.  
 Kinematic relation:  x = 1θ 

 Kinetic Energy: 
  
T =

1
2

m ˙ x 2 =
1
2

m2
2 ˙ θ 2  

 Potential Energy: 
  
U =

1
2

k(1θ)2 + mg2(1 − cosθ )  

 Taking the derivative of the total energy yields: 

  

d
dt

(T + U ) = m2
2 ˙ θ ˙ ̇ θ + k(1

2θ) ˙ θ + mg2 (sinθ ) ˙ θ = 0 

 Rearranging, dividing by dθ/dt and approximating sinθ with θ yields: 

  

m 2
2˙ ̇ θ + (k1

2 + mg2 )θ = 0

               ⇒ω n =
k1

2 + mg2

m2
2
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1.70 To save space, two large pipes are shipped one stacked inside the other as 
indicated in Figure P1.70.  Calculate the natural frequency of vibration of the 
smaller pipe (of radius R1) rolling back and forth inside the larger pipe (of radius 
R).  Use the energy method and assume that the inside pipe rolls without slipping 
and has a mass m. 

TRUCKER

Truck bed

Small pipe

Large pipe

(a)

R1

R
O

O'

a

a'

b

 

mg

(b)  
 

Figure P1.70 
 
Solution: Let θ be the angle that the line between the centers of the large pipe and the 

small pipe make with the vertical and let α be the angle that the small pipe rotates 
through.  Let R be the radius of the large pipe and R1 the radius of the smaller 
pipe. Then the kinetic energy of the system is the translational plus rotational of 
the small pipe.  The potential energy is that of the rise in height of the center of 
mass of the small pipe. 

R        θ  
R – R1

y
R1 x

 
From the drawing:  
y + (R− R1)cosθ + R1 = R

     ⇒ y = (R − R1)(1− cosθ)

               ⇒ ˙ y = (R − R1)sin(θ) ˙ θ 

 

Likewise examination of the value of x yields: 
x = (R − R1)sinθ

       ⇒ ˙ x = (R− R1)cosθ ˙ θ 
 

Let β denote the angle of rotation that the small pipe experiences as viewed in the 
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inertial frame of reference (taken to be the truck bed in this case).  Then the total 
kinetic energy can be written as: 

T = Ttrans + Trot = 1
2

m ˙ x 2 + 1
2

m ˙ y 2 + 1
2

I0
˙ β 2

     =
1
2

m(R− R1 )2(sin2θ + cos2 θ) ˙ θ 2 +
1
2

I0
˙ β 2

                           ⇒ T =
1
2

m(R − R1)
2 ˙ θ 2 +

1
2

I0
˙ β 2

 

The total potential energy becomes just: 
V = mgy = mg(R− R1)(1− cosθ)  
Now it remains to evaluate the angle β.   Let α be the angle that the small pipe 
rotates in the frame of the big pipe as it rolls (say) up the inside of the larger pipe.  
Then 
β = θ – α 
were α is the angle “rolled” out as the small pipe rolls from a to b  in figure 
P1.56. The rolling with out slipping condition implies that arc length a’b must 
equal arc length ab.  Using the arc length relation this yields that  Rθ =R1α.  
Substitution of the expression β = θ – α yields: 
 

Rθ = R1(θ − β ) = R1θ − R1β ⇒ (R − R1 )θ = −R1β

    ⇒ β =
1
R1

(R1 − R)θ  and   ˙ β =
1
R1

(R1 − R) ˙ θ 
 

which is the relationship between angular motion of the small pipe relative to the 
ground (β) and the position of the pipe (θ). Substitution of this last expression into 
the kinetic energy term yields: 

T =
1
2

m(R− R1)
2 ˙ θ 2 +

1
2

I0(
1
R1

(R1 − R) ˙ θ )2

            ⇒  T = m(R− R1)
2 ˙ θ 2

 

 
Taking the derivative of T + V  yields 

d
dθ

T + V( ) = 2m(R− R1 )2 ˙ θ ˙ ̇ θ + mg(R− R1 )sinθ ˙ θ = 0

         ⇒ 2m(R − R1)
2 ˙ ̇ θ + mg(R − R1 )sinθ = 0

 

Using the small angle approximation for sine this becomes 
2m(R − R1)

2 ˙ ̇ θ + mg(R − R1)θ = 0

         ⇒ ˙ ̇ θ +
g

2(R − R1)
θ = 0

                   ⇒ω n = g
2(R − R1 )
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1.71 Consider the example of a simple pendulum given in Example 1.4.2.  The 

pendulum motion is observed to decay with a damping ratio of ζ = 0.001.  

Determine a damping coefficient and add a viscous damping term to the 

pendulum equation. 

 

 Solution: From example 1.4.2, the equation of motion for a simple pendulum is 

  0=+ θθ


 g
 

 So 
 
ω n =

g


.  With viscous damping the equation of motion in normalized form 

becomes: 

  
˙ ̇ θ + 2ζωn

˙ θ +ωn
2θ = 0  or with ζ as given :

                     ⇒ ˙ ̇ θ + 2 .001( )ω n
˙ θ + ωn

2θ = 0
 

 The coefficient of the velocity term is 

  

 

c
J
= c

m2 = .002( ) g


c = 0.002( )m g3
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1.72 Determine a damping coefficient for the disk-rod system of Example 1.4.3.  

Assuming that the damping is due to the material properties of the rod, determine 

c for the rod if it is observed to have a damping ratio of ζ = 0.01. 

 Solution: The equation of motion for a disc/rod in torsional vibration is 

  0=+ θθ kJ   

 or 
 

θ +ω n
2θ = 0 where ω n =

k
J

 

 Add viscous damping: 

  

 

θ + 2ζω n
θ +ω n

2θ = 0

θ + 2 .01( ) k
J
θ +ω n

2θ = 0
 

 From the velocity term, the damping coefficient must be 

  

  

c
J
= 0.02( ) k

J
   ⇒ c = 0.02 kJ

 

1.73 The rod and disk of Window 1.1 are in torsional vibration.  Calculate the damped 

natural frequency if J = 1000 m2 ⋅  kg, c = 20 N⋅  m⋅ s/rad, and k = 400 N⋅m/rad. 

 Solution: The equation of motion is 

  0=++ θθθ kcJ   

 The damped natural frequency is 

  ω d =ω n 1−ζ 2  

 where ω n =
k
J
= 400

1000
= 0.632 rad/s  

 and ζ = c
2 kJ

= 20
2 400 ×1000

= 0.0158  

 Thus the damped natural frequency is ωd = 0.632 rad/s  
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1.74 Consider the system of P1.74, which represents a simple model of an aircraft 

landing system.  Assume, x = rθ.  What is the damped natural frequency? 

 
Figure P1.74 

 Solution:  Ignoring the damping and using the energy method the equation of 

motion is 

  

 

T = 1
2

J θ 2 + 1
2

mx2 ,   U = 1
2

kx2 ,   θ = x
r

d
dt

T +U( ) = d
dt

1
2

J
x

r 2

2

+ 1
2

mx2 + 1
2

kx2⎛
⎝⎜

⎞
⎠⎟

⇒ J
r 2 xx + mxx + kx x

 

 Thus the undamped equation of motion is: 

  m +
J
r2

⎛ 
⎝ 

⎞ 
⎠ ˙ ̇ x + kx = 0  

 From examining the equation of motion the natural frequency is: 

ω n =
k

meq

= k

m + J
r 2

 

 An add hoc way do to this is to add the damping force to get the damped equation 

of motion: 

  m +
J
r2

⎛ 
⎝ 

⎞ 
⎠ ˙ ̇ x + c˙ x + kx = 0  

 The value of ζ is determined by examining the velocity term: 
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c

m + J
r2

= 2ζωn ⇒ζ =
c

m + J
r2

1

2
k

m + J
r2

                ⇒ζ =
c

2 k m + J
r2

⎛
⎝⎜

⎞
⎠⎟

 

 Thus the damped natural frequency is 

ωd =ωn 1−ζ 2 =
k

m + J
r2

1−
c

2 k m + J
r2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

                       ⇒ωd =
k

m + J
r2

−
c2

4 m + J
r2

⎛
⎝⎜

⎞
⎠⎟

2 =
r

2(mr2 + J )
4(kmr2 + kJ ) − c2r2

 

 

    

 

1.75 Consider Problem 1.74 with k = 400,000 N/m, m = 1500 kg, J = 100 m2⋅kg/rad, r 

= 25 cm, and c = 8000 kg/s.  Calculate the damping ratio and the damped natural 

frequency.  How much effect does the rotational inertia have on the undamped 

natural frequency? 

 Solution: From problem 1.74: 

  ζ = c

2 k m + J
r 2

⎛
⎝

⎞
⎠

 and ω d =
k

m + J
r 2

− c2

4 m + J
r 2

⎛
⎝

⎞
⎠

2  

 Given: 

  

k = 4 ×105  N/m

m = 1.5×103  kg

J = 100 m2kg/rad

r = 0.25 m and

c = 8×103  N ⋅s/m

 

 Inserting the given values yields 
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  ζ = 0.114 and ω d = 11.29 rad/s  

 For the undamped natural frequency, ω n =
k

m + J / r 2  

 With the rotational inertia, ω n = 11.36 rad/s  

 Without rotational inertia, ω n = 16.33 rad/s  

 The effect of the rotational inertia is that it lowers the natural frequency by almost 

33%. 

 

1.76 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.76.  Model each of the brackets as a spring 

of stiffness k, and assume the inertia of the pulleys is negligible. 

                         
                                                 Figure P1.76 
 
Solution: Let x denote the distance mass m moves, then each spring will deflects 
a distance x/4.  Thus the potential energy of the springs is  

  
U = 2 ×

1
2

k
x
4

⎛
⎝⎜

⎞
⎠⎟

2

=
k

16
x2  

The kinetic energy of the mass is  

   
T =

1
2

mx2  

Using the Lagrange formulation in the form of Equation (1.64): 

   

d
dt

∂
∂x

1
2

mx2⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+

∂
∂x

kx2

16
⎛

⎝⎜
⎞

⎠⎟
= 0 ⇒

d
dt

mx( ) + k
8

x = 0

                                 ⇒ mx +
k
8

x = 0 ⇒ω n =
1
2

k
2m

 rad/s
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1.77 Use Lagrange’s formulation to calculate the equation of motion and the natural 
frequency of the system of Figure P1.77.  This figure represents a simplified 
model of a jet engine mounted to a wing through a mechanism which acts as a 
spring of stiffness k and mass ms. Assume the engine has inertia J and mass m and 
that the rotation of the engine is related to the vertical displacement of the engine, 
x(t) by the “radius” r0 (i.e.   x = r0θ ). 

 
 

 
Figure P1.77 

 Solution: This combines Examples 1.4.1 and 1.4.4.  The kinetic energy is  

   
T =

1
2

mx2 +
1
2

J θ 2 + Tspring =
1
2

m +
J
r0

2

⎛

⎝
⎜

⎞

⎠
⎟ x

2 + Tspring  

The kinetic energy in the spring (see example 1.4.4) is 

   
Tspring =

1
2

ms

3
x2  

Thus the total kinetic energy is  

   
T =

1
2

m +
J
r0

2 +
ms

3
⎛

⎝
⎜

⎞

⎠
⎟ x

2  

The potential energy is just  

  
U =

1
2

kx2  

Using the Lagrange formulation of Equation (1.64) the equation of motion results 
from: 

   

d
dt

∂
∂x

1
2

m +
J
r0

2 +
ms

3
⎛

⎝
⎜

⎞

⎠
⎟ x

2
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+

∂
∂x

1
2

kx2⎛
⎝⎜

⎞
⎠⎟
= 0

                           ⇒ m +
J
r0

2 +
ms

3
⎛

⎝
⎜

⎞

⎠
⎟ x + kx = 0

                                          ⇒ω n =
k

m + J
r0

2 +
ms

3
⎛

⎝⎜
⎞

⎠⎟

 rad/s
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1.78 Consider the inverted simple pendulum connected to a spring of Figure P1.68. 

Use Lagrange’s formulation to derive the equation of motion. 
 
 Solution: The energies are (see the solution to 1.68): 

 
T = 1

2
ml2 θ 2 ,    U = 1

2
kx2 + mgh  

 Choosing θ as the generalized coordinate, the spring compresses a distance x = l 
sin θ and the mass moves a distance h = l cos θ from the reference position. So the 
Lagrangian becomes: 

 
L = T −U = 1

2
ml2 θ 2 − 1

2
kl2 sin2θ − mgl cosθ  

The terms in Lagrange’s equation are 

 

∂L
∂ θ

= ml2 θ ,   
∂L
∂θ

= −kl2 sinθ cosθ + mgl sinθ  

Thus from the Lagrangian the equation of motion is 

 

d
dt

∂L
∂ θ

⎛
⎝⎜

⎞
⎠⎟ −

∂L
∂θ

= ml2 θ + kl2 sinθ cosθ − mgl sinθ = 0

                      ⇒ θ + lk − mg
ml

⎛
⎝

⎞
⎠θ = 0

 

Where the last expression is the linearized version for small θ. 
 
1.79 Lagrange’s formulation can also be used for non-conservative systems by adding 

the applied non-conservative term to the right side of equation (1.63) to get  

   

d
dt

∂T
∂ qi

⎛

⎝⎜
⎞

⎠⎟
−
∂T
∂qi

+
∂U
∂qi

+
∂Ri

∂ qi

= 0  

Here Ri is the Rayleigh dissipation function defined in the case of a viscous 
damper attached to ground by 

   
Ri =

1
2

c qi
2  

Use this extended Lagrange formulation to derive the equation of motion of the 
damped automobile suspension driven by a dynamometer illustrated in Figure 
P1.79.  Assume here that the dynamometer drives the system such that x =rθ. 
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Figure P1.79 

 
 Solution: The kinetic energy is 

   
T = 1

2
mx2 + 1

2
J θ 2 = 1

2
(m+ J

r 2 ) x2  

 The potential energy is: 

  
U =

1
2

kx2  

 The Rayleigh dissipation function is 

   
R =

1
2

c x2  

 The Lagrange formulation with damping becomes 

   

d
dt

∂T
∂ qi

⎛

⎝⎜
⎞

⎠⎟
−
∂T
∂qi

+
∂U
∂qi

+
∂Ri

∂ qi

= 0

          ⇒
d
dt

∂
∂x

1
2

(m +
J
r 2 ) x2⎛

⎝⎜
⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+

∂
∂x

1
2

kx2⎛
⎝⎜

⎞
⎠⎟
+

∂
∂x

1
2

c x2⎛
⎝⎜

⎞
⎠⎟
= 0

                                         ⇒ (m +
J
r 2 )x + c x + kx = 0

 

1.80 Consider the disk of Figure P1.80 connected to two springs.  Use the energy 

method to calculate the system's natural frequency of oscillation for small angles 

θ(t). 

m   mass

x(t)

 (t)

kk s

a

r

 
Figure P1.80 

 
 Solution: 

 Known:  x = rθ , ˙ x = r ˙ θ  and 2

2
1
mrJo =  

 Kinetic energy: 

  

 

Trot =
1
2

Jo
θ 2 = 1

2
mr 2

2
⎛
⎝⎜

⎞
⎠⎟
θ 2 = 1

4
mr 2 θ 2

Ttrans =
1
2

mx2 = 1
2

mr 2 θ 2

T = Trot + Ttrans =
1
4

mr 2 θ 2 + 1
2

mr 2 θ 2 = 3
4

mr 2 θ 2
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 Potential energy: U = 2
1
2

k a + r( )θ[ ]2⎛
⎝

⎞
⎠ = k a + r( )2θ 2  

 Conservation of energy: 

  

 

T +U =  Constant

d
dt

T +U( ) = 0

d
dt

3
4

mr 2 θ 2 + k a + r( )2θ 2⎛
⎝

⎞
⎠ = 0

3
4

mr 2 2 θ θ( ) + k a + r( )2 2 θθ( ) = 0

3
2

mr 2 θ + 2k a + r( )2θ = 0

 

 Natural frequency: 

  

ω n =
keff

meff

= 2k a + r( )2

3
2

mr 2

ω n = 2
a + r

r
k

3m
 rad/s

 

 
1.81 A pendulum of negligible mass is connected to a spring of stiffness k at halfway 

along its length, l, as illustrated in Figure P1.81. The pendulum has two masses 

fixed to it, one at the connection point with the spring and one at the top.  Derive 

the equation of motion using the Lagrange formulation, linearize the equation and 

compute the systems natural frequency. Assume that the angle remains small 

enough so that the spring only stretches significantly in the horizontal direction. 

 

 
Figure P1.81 

  
Solution: Using the Lagrange formulation the relevant energies are: 

 

T = 1
2

m1

l
2

⎛
⎝

⎞
⎠

2

θ 2 + 1
2

m2l
2 θ 2

U = 1
2

kx2 + m1gh1 + m2gh2

 

From the trigonometry of the drawing: 
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x = l
2

sinθ ,   h1 =
l
2

cosθ ,   h2 = l cosθ  

 
So the potential energy writing in terms of θ is: 

U = 1
2

k
l
2

sinθ⎛
⎝

⎞
⎠

2

+ m1g
l
2

cosθ + m2gl cosθ  

Setting L = T-U and taking the derivatives required for the Lagrangian yields: 
 
 

 

d
dt

∂L
∂ θ

⎛
⎝⎜

⎞
⎠⎟ =

d
dt

1
2

m1

l
2

⎛
⎝

⎞
⎠

2

θ 2 + 1
2

m2l
2 θ 2⎛

⎝⎜
⎞
⎠⎟

             = d
dt

1
4

m1l
2 θ + m2l

2 θ⎛
⎝

⎞
⎠ =

m1l
2 + 4m2l

2

4
θ

 

 

− ∂L
∂θ

= kl
2

sinθ cosθ − l
2

m1gsinθ − m2gl sinθ  

Thus the equation of motion becomes 

 

m1l
2 + 4m2l

2

4
θ + kl

2
sinθ cosθ − l

2
m1gsinθ − m2gl sinθ = 0  

Linearizing for small θ this becomes 
 

 

m1l
2 + 4m2l

2

4
θ + (

kl
2
− l

2
m1g − m2gl)θ = 0  

So the natural frequency is 

ω n =
2k − 2m1g − 4m2g

m1l + 4m2l
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