CHAPTER 1

1.1 (a) $\rho=\frac{\mathrm{p}}{\mathrm{RT}}=\frac{1.9 \times 10^{4}}{(287)(203)}=0.326 \mathrm{~kg} / \mathrm{m}^{3}$
(b) $\mathrm{T}=\frac{\mathrm{p}}{\rho \mathrm{R}}=\frac{1058}{\left(1.23 \times 10^{-3}\right)(1716)}=501^{\circ} \mathrm{R}$
$1.2 \quad N^{\prime}=-\int_{L E}^{T E}\left(p_{u} \cos \theta+\tau_{u} \sin \theta\right) d s_{u}$

$$
\begin{equation*}
+\int_{\mathrm{LE}}^{\mathrm{TE}}\left(\mathrm{p}_{\ell} \cos \theta-\tau_{\ell} \sin \theta\right) \mathrm{ds}_{\ell} \tag{1.7}
\end{equation*}
$$

$$
\mathrm{ds} \cos \theta=\mathrm{dx}
$$

$$
d s \sin \theta=-d y
$$

Hence,

$$
\begin{aligned}
& N^{\prime}=-\int_{L E}^{T E}\left(p_{u}-p_{\ell}\right) d x+\int_{L E}^{T E}\left(\tau_{u}+\tau_{\ell}\right) d y \\
& N^{\prime}=-\int_{L E}^{T E}\left[\left(p_{u}-p_{\infty}\right)-\left(p_{\ell}-p_{\infty}\right)\right] d x+\int_{L E}^{T E}\left(\tau_{u}+\tau_{\ell}\right) d y
\end{aligned}
$$

Divide by $\mathrm{q}_{\infty} \mathrm{S}=\mathrm{q}_{\infty} \mathrm{c}(1)$

$$
\begin{aligned}
& \frac{N^{\prime}}{q_{\infty} c}=-\frac{1}{c} \int_{L E}^{T E}\left[\left(\frac{p_{u}-p_{\infty}}{q_{\infty}}\right)-\left(\frac{p_{\ell}-p_{\infty}}{q_{\infty}}\right)\right] d x+\frac{1}{c} \int_{L E}^{T E}\left(\frac{\tau_{u}}{q_{\infty}}+\frac{\tau_{\ell}}{q_{\infty}}\right) d y \\
& c_{n}=\frac{1}{c} \int_{0}^{c}\left(c_{p_{t}}-c_{p_{u}}\right) d x+\frac{1}{c} \int_{L E}^{T E}\left(c_{f_{u}}+c_{f_{e}}\right) d y
\end{aligned}
$$

This is Eq. (1.15).

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

$$
\begin{align*}
& A^{\prime}=\int_{L E}^{T E}\left(-p_{u} \sin \theta+\tau_{u} \cos \theta\right) d s_{u} \\
& \tag{1.8}\\
& \quad+\int_{L E}^{T E}\left(p_{\ell} \sin \theta+\tau_{\ell} \cos \theta\right) d s_{\ell} \\
& A^{\prime}=\int_{L E}^{T E}\left(p_{u}-p_{\ell}\right) d y+\int_{L E}^{T E}\left(\tau_{u}+\tau_{\ell}\right) d x \\
& A^{\prime}=\int_{L E}^{T E}\left[\left(p_{u}-p_{\infty}\right)-\left(p_{\ell}-p_{\infty}\right)\right] d y+\int_{0}^{c}\left(\tau_{u}+\tau_{\ell}\right) d x \\
& A^{\prime} \\
& q_{\infty} c
\end{align*}=\frac{1}{c} \int_{L E}^{T E}\left[\left(\frac{p_{u}-p_{\infty}}{q_{\infty}}\right)-\left(\frac{p_{\ell}-p_{\infty}}{q_{\infty}}\right)\right] d y+\frac{1}{c} \int_{0}^{c}\left(\frac{\tau_{u}}{q_{\infty}}+\frac{\tau_{\ell}}{q_{\infty}}\right) d x .
$$

This is Eq. (1.16).

$$
\begin{aligned}
\mathrm{M}_{\mathrm{LE}}^{\prime}= & \int_{\mathrm{LE}}^{\mathrm{TE}}\left[\left(\mathrm{p}_{\mathrm{u}} \cos \theta+\tau_{\mathrm{u}} \sin \theta\right) \mathrm{x}-\left(\mathrm{p}_{\mathrm{u}} \sin \theta-\tau_{\mathrm{u}} \cos \theta\right) \mathrm{y}\right] \mathrm{ds} \mathrm{~s}_{\mathrm{u}} \\
& \left.+\int_{\mathrm{LE}}^{\mathrm{TE}}\left[-\mathrm{p}_{\ell} \cos \theta+\tau_{\ell} \sin \theta\right) \mathrm{x}+\left(\mathrm{p}_{\ell} \sin \theta+\tau_{\ell} \cos \theta\right) \mathrm{y}\right] \mathrm{ds} \\
\mathrm{M}_{\ell}^{\prime}{ }_{\mathrm{LE}}= & \int_{\mathrm{LE}}^{\mathrm{TE}}\left[p_{u}-p_{\ell}\right] \mathrm{xdx}-\int_{\mathrm{LE}}^{\mathrm{TE}}\left(\tau_{\mathrm{u}}+\tau_{\ell}\right) \mathrm{xdy} \\
& +\int_{\mathrm{LE}}^{\mathrm{TE}}\left[\mathrm{p}_{\mathrm{u}}-\mathrm{p}_{\ell}\right] \mathrm{ydy}+\int_{\mathrm{LE}}^{\mathrm{TE}}\left(\tau_{\mathrm{u}}+\tau_{\ell}\right) \mathrm{y} \mathrm{dx} \\
\mathrm{M}_{\mathrm{LE}}^{\prime}= & \int_{\mathrm{LE}}^{\mathrm{TE}}\left[\left(\mathrm{p}_{\mathrm{u}}-\mathrm{p}_{\infty}\right)-\left(\mathrm{p}_{\ell}-\mathrm{p}_{\infty}\right)\right] \mathrm{xdx}-\int_{\mathrm{LE}}^{\mathrm{TE}}\left(\tau_{\mathrm{u}}+\tau_{\ell}\right) \mathrm{xdy} \\
& \left.+\int_{\mathrm{LE}}^{\mathrm{TE}}\left[\mathrm{p}_{\mathrm{u}}-\mathrm{p}_{\infty}\right)-\left(\mathrm{p}_{\ell}-\mathrm{p}_{\infty}\right)\right] \mathrm{ydy}+\int_{\mathrm{LE}}^{\mathrm{TE}}\left(\tau_{u}+\tau_{\ell}\right) \mathrm{ydx}
\end{aligned}
$$

Divide by $\mathrm{q}_{\infty} \mathrm{c}^{2}$:

$$
\frac{M_{L E}}{q_{\infty} c^{2}}=\frac{1}{c^{2}} \int_{L E}^{T E}\left[\left(\frac{p_{u}-p_{\infty}}{q_{\infty}}\right)-\left(\frac{p_{\ell}-p_{\infty}}{q_{\infty}}\right)\right] x d x-\frac{1}{c^{2}} \int_{L E}^{T E}\left(\frac{\tau_{u}}{q_{\infty}}+\frac{\tau_{\ell}}{q_{\infty}}\right) x d y
$$

$$
\begin{aligned}
& \quad+\frac{1}{c^{2}} \int_{L E}^{T E}\left[\left(\frac{p_{v}-p_{\infty}}{q_{\infty}}\right)-\left(\frac{p_{\ell}-p_{\infty}}{q_{\infty}}\right)\right] y d y+\frac{1}{c^{2}} \int_{L E}^{T E}\left(\frac{\tau_{u}}{q_{\infty}}+\frac{\tau_{\ell}}{q_{\infty}}\right) y d x \\
& c_{m_{m_{c e}}}=\frac{1}{c^{2}}\left[\int_{0}^{c}\left(C_{p_{u}}-C_{p_{k}}\right) x d x-\int_{L E}^{T E}\left(C_{f_{u}}+C_{f_{t}}\right) x d y\right. \\
& \left.\quad+\int_{L E}^{T E}\left(C_{p_{u}}-C_{p_{k}}\right) y d y+\int_{0}^{c}\left(C_{f_{u}}+C_{f_{t}}\right) y d x\right]
\end{aligned}
$$

This is Eq. (1.17).
1.3

$$
\begin{aligned}
& M_{L E}^{\prime}=-\int_{0}^{c}\left(p_{\ell}-p_{u}\right)(d x)(1) x-\left(p_{\ell}-p_{u}\right) \int_{0}^{c} x d x \\
& M_{L E}^{\prime}=-\left(p_{\ell}-p_{u}\right) \frac{c^{2}}{2} \\
& N^{\prime}=\int_{0}^{c}\left(p_{\ell}-p_{u}\right) d x=\left(p_{\ell}-p_{u}\right) c
\end{aligned}
$$

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

$$
\begin{aligned}
& X_{c p}=-\frac{M_{L E}^{\prime}}{N^{\prime}}=-\frac{\left[-\left(p_{\ell}-p_{u}\right) \frac{c^{2}}{2}\right]}{\left(p_{\ell}-p_{u}\right) c} \\
& X_{C P}=c / 2
\end{aligned}
$$

1.3 For a flat plate, $\theta=0$ in Eqs. (1.7) - (1.11). Hence,

$$
\begin{aligned}
\mathrm{N}^{\prime} & =\int_{0}^{\mathrm{c}}\left(\mathrm{p}_{\ell}-\mathrm{p}_{\mathrm{u}}\right) \mathrm{dx}=\int_{0}^{1}\left[-2 \times 10^{4}(\mathrm{x}-1)^{2}+1.19 \times 10^{5}\right] \mathrm{dx} \\
\mathrm{~N}^{\prime} & =-2 \times 10^{4}\left[\frac{\mathrm{x}^{3}}{3}-\mathrm{x}^{2}+\mathrm{x}\right]_{0}^{1}+\left[1.19 \times 10^{5} \mathrm{x}\right]_{0}^{1}=1.12 \times 10^{5} \mathrm{~N} \\
\mathrm{~A}^{\prime} & =\int_{0}^{\mathrm{c}}\left(\tau_{\ell}-\tau_{\mathrm{u}}\right) \mathrm{dx}=\int_{0}^{1}\left(731 \mathrm{x}^{-0.2}+288 \mathrm{x}^{-0.2}\right) \mathrm{dx} \\
\mathrm{~A}^{\prime} & =\left[12.74 \mathrm{x}^{0.8}\right]_{0}^{1}=1274 \mathrm{~N} \\
\mathrm{~L}^{\prime} & =\mathrm{N}^{\prime} \cos \alpha-\mathrm{A}^{\prime} \sin \alpha=1.12 \times 10^{5} \cos 10^{\circ}-1274 \sin 10^{\circ} \\
& =1.105 \times 10^{5} \mathrm{~N} \\
\mathrm{D}^{\prime} & =\mathrm{N}^{\prime} \sin \alpha+\mathrm{A}^{\prime} \cos \alpha=1.12 \times 10^{5} \sin 10^{\circ}+1274 \cos \alpha \\
& =2.07 \times 10^{4} \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{LE}}^{\prime}=\int_{0}^{\mathrm{c}}\left[\mathrm{p}_{\mathbf{u}}-\mathrm{p}_{\ell}\right] \times \mathrm{dx}=\int_{0}^{1}\left[2 \times 10^{4}(\mathrm{x}-1)^{2}-1.19 \times 10^{5}\right] \times \mathrm{dx}
$$

$$
+2 \times 10^{4}\left[\frac{x^{4}}{4}-\frac{2 x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{1}-\left[0.595 \times 10^{5} x^{2}\right]_{0}^{1}=-5.78 \times 10^{4} \mathrm{Nm}
$$

$$
\mathrm{M}_{\mathrm{c} / 4}^{\prime}=\mathrm{M}_{\mathrm{LE}}^{\prime}+\mathrm{L}^{\prime}(\mathrm{c} / 4)=-5.78 \times 10^{4}+1.105 \times 10^{5}(0.25)
$$

$$
=-3.02 \times 10^{4} \mathrm{~N} / \mathrm{m}
$$

$$
\mathrm{X}_{\mathrm{CP}}=-\frac{\mathrm{M}_{\mathrm{LE}}^{\prime}}{\mathrm{N}^{\prime}}=-\frac{\left(-5.78 \times 10^{4}\right)}{1.12 \times 10^{5}}=0.516 \mathrm{~m}
$$

1.5

$$
\begin{aligned}
c & =c_{n} \cos \alpha-c_{a} \sin \alpha \\
& =(1.2) \cos 12^{\circ}-(0.3) \sin \alpha=1.18 \\
c_{d} & =c_{n} \sin \alpha+c_{a} \cos \alpha \\
& =(1.2) \sin 12^{\circ}+(0.3) \cos \alpha=0.279
\end{aligned}
$$

$1.6 \quad c_{n}=c_{\ell} \cos \alpha+c_{d} \sin \alpha$
Also, using the more accurate N^{\prime} rather than L^{\prime} in Eq. (1.22), we have

$$
\mathrm{x}_{\mathrm{cp}}=\frac{\mathrm{c}}{4}-\frac{\mathrm{M}_{\mathrm{c} / 4}^{\prime}}{\mathrm{N}^{\prime}}=\frac{\mathrm{c}}{4}-\mathrm{c}\left(\frac{\mathrm{c}_{\mathrm{m}_{\mathrm{cl/4}}}}{\mathrm{c}_{\mathrm{n}}}\right)
$$

Hence:

$\alpha\left({ }^{\circ}\right)$	c_{n}	$\mathrm{x}_{\mathrm{cp}} / \mathrm{c}$
-2.0	0.0498	1.09
0	0.25	0.41
2.0	0.44	0.336
4.0	0.639	0.306
6.0	0.846	0.293
8.0	1.07	0.284
10.0	1.243	0.277
12.0	1.402	0.271
14.0	1.52	0.266

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

Note that x_{cp} moves forward as α is increased, and that it closely approaches the quarterchord point in the range of α of 10° to 14°. At higher angles-of-attack, beyond the stall ($\alpha>$ 16°), x_{cp} will reverse its movement and move rearward as α continues to increase. Compare the above variation with the center-of-pressure measurements of the Wright Brothers on one of their airfoils', shown in Fig. 1.28.
1.7 $\mathrm{K}=3$ (mass, length, and time)

$$
\mathrm{f}_{1}\left(\mathrm{D}, \mathrm{\rho}_{\infty}, \mathrm{V}_{\infty}, \mathrm{c}, \mathrm{~g}\right)=0 \quad \text { Hence } \mathrm{N}=5
$$

We can write this expression in terms of $\mathrm{N}-\mathrm{K}=5-3=2$ dimensionless Pi products:

$$
\mathrm{f}_{2}\left(\Pi_{1}, \Pi_{2}\right)
$$

where

$$
\begin{aligned}
& \Pi_{1}=f_{3}\left(\rho_{\infty}, V_{\infty}, c, D\right) \\
& \Pi_{2}=f_{4}\left(\rho_{\infty}, V_{\infty}, c, g\right)
\end{aligned}
$$

Let $\quad \Pi_{1}=\rho_{\infty}{ }^{a} V_{\infty}{ }^{b} c^{d} D$
$1=\left(\mathrm{m} \ell^{-3}\right)^{\mathrm{a}}\left(\ell \mathrm{t}^{-1}\right)^{\mathrm{b}} \ell^{\mathrm{c}}\left(\mathrm{m} \ell \mathrm{t}^{-2}\right)=0$
\(\left.\begin{array}{l}mass: a+1=0

length:-3 a+b+c+1=0

time:-b-2=0\end{array}\right\}\)| $a=-1$ |
| :--- |
| $b=-2$ |
| $c=-2$ |

Hence:

$$
\begin{aligned}
& \Pi_{1}=\frac{\mathrm{D}}{\rho_{\infty} \mathrm{V}_{\infty}{ }^{2} \mathrm{c}^{2}}, \text { or } \Pi_{1}=\frac{\mathrm{D}}{\frac{1}{2} \rho_{\infty} \mathrm{V}_{\infty}{ }^{2} \mathrm{c}^{2}} \\
& \Pi_{1}=\frac{\mathrm{D}}{\mathrm{q}_{\infty} \mathrm{c}^{2}}
\end{aligned}
$$

Let $\quad \Pi_{2}=\rho_{\infty}{ }^{2} V_{\infty} c^{b} g^{d}$
$1=\left(m \ell^{-3}\right)^{\mathrm{a}}\left(\ell \mathrm{t}^{-1}\right) \ell^{\mathrm{b}}\left(\ell \mathrm{t}^{-2}\right)^{\mathrm{d}}=0$
mass: $a=0$
length: $-3 a+1+b+d=0$
time: $-1-2 d=0$
$a=0$

Hence:

$$
\Pi_{2}=\frac{V_{\infty}}{\sqrt{c \mathrm{cg}}}
$$

Thus:
$\mathrm{f}_{2}\left(\Pi_{1}, \Pi_{2}\right)=\mathrm{f}_{2}\left(\frac{\mathrm{D}}{\mathrm{q}_{\infty} \mathrm{c}^{2}}, \frac{\mathrm{~V}_{\infty}}{\sqrt{\mathrm{cg}}}\right)=0$
or:
$C_{D}=f\left(F_{r}\right)$
$1.8 \quad D_{w}=f_{1}\left(\rho_{\infty}, V_{\infty}, c, a_{\infty}, c_{p}, c_{v}\right)$
$K=4$ (mass, length, time, degrees)

$$
\mathrm{f}_{2}\left(\mathrm{D}_{\mathrm{w}}, \rho_{\infty}, \mathrm{V}_{\infty}, \mathrm{c}, \mathrm{a}_{\infty}, \mathrm{c}_{\mathrm{p}}, \mathrm{c}_{\mathrm{v}}\right)=0
$$

Hence, $\mathrm{N}=7$. This can be written as a function of $\mathrm{N}-\mathrm{K}=7-4=3$ pi products:

$$
\mathrm{f}_{3}=\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)=0
$$

where:

$$
\begin{aligned}
& \Pi_{1}=f_{4}\left(\rho_{\infty}, V_{\infty}, c, c_{p}, D\right) \\
& \Pi_{2}=f_{5}\left(\rho_{\infty}, V_{\infty}, c, c_{p}, a_{\infty}\right) \\
& \Pi_{3}=f_{6}\left(\rho_{\infty}, V_{\infty}, c, c_{p}, c_{v}\right)
\end{aligned}
$$

The dimensions of c_{p} and c_{v} are

$$
\begin{aligned}
& {\left[\mathrm{c}_{\mathrm{p}}\right]=\frac{\text { energy }}{\operatorname{mass}\left({ }^{\circ}\right)}=\frac{(\text { force })(\text { distance })}{\operatorname{mass}\left({ }^{\circ}\right)}=\frac{\left(\mathrm{m} \ell \mathrm{t}^{-2}\right)(\ell)}{\mathrm{m}\left(^{\circ}\right)}} \\
& {\left[\mathrm{c}_{\mathrm{p}}\right]=\ell^{2} \mathrm{t}^{-2}\left({ }^{\circ}\right)^{-1} \text { where }\left(^{\circ}\right) \text { degrees. }}
\end{aligned}
$$

For Π_{1} :

$$
\begin{array}{ll}
\rho_{\infty}{ }^{1} V_{\infty}{ }^{j} c^{k} c_{p}{ }^{n} D=\Pi_{1} & \\
\left(m \ell^{-3}\right)^{i}\left(\ell \mathrm{t}^{-1}\right)^{j}(\ell)^{\mathrm{k}}\left(\ell^{2} \mathrm{t}^{-2}\right)^{\mathrm{n}}\left({ }^{0}\right)^{-n}\left(\mathrm{~m} \ell \mathrm{t}^{-2}\right)=1 \\
\text { mass: } \quad \mathrm{i}+1=0 & \mathrm{i}=-1 \\
\text { length: }-3 i+j+\mathrm{k}+2 \mathrm{n}+1=0 & \mathrm{n}=0 \\
\text { time: } \quad-\mathrm{j}-2 \mathrm{n}-2=0 & \mathrm{j}=-2 \\
\text { degrees: }-\mathrm{n}=0 & \mathrm{k}=-2
\end{array}
$$

Hence:

$$
\Pi_{1}=\frac{\mathrm{D}}{\rho_{\infty} \mathrm{V}_{\infty}{ }^{2} \mathrm{c}^{2}} \text {, or } \Pi_{l}=\frac{\mathrm{D}}{\mathrm{q}_{\infty} \mathrm{c}}
$$

For Π_{2} :

$$
\Pi_{2}=\rho_{\infty}{ }^{i} V_{\infty} c^{j} c_{p}{ }^{k} a_{\infty}{ }^{n}
$$

Hence:

$$
\Pi_{2}=\frac{V_{\infty}}{a_{\infty}}
$$

For Π_{3} :

Hence:

$$
\Pi_{3}=\frac{c_{v}}{c_{p}} . \text { We can take the reciprocal, and still have a dimensionless product. }
$$

Hence,

$$
\Pi_{3}=\frac{c_{v}}{c_{p}}=\gamma
$$

Thus,

$$
\mathrm{f}_{3}\left(\frac{\mathrm{D}}{\mathrm{q}_{\infty} \mathrm{S}}, \frac{\mathrm{~V}_{\infty}}{\mathrm{a}_{\infty}}, \frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{v}}\right)
$$

or,

$$
\mathrm{C}_{\mathrm{D}}=\mathrm{f}\left(\mathrm{M}_{\infty}, \gamma\right)
$$

$1.9 \quad \frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \sqrt{\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}}=\frac{100}{200} \sqrt{\frac{800}{200}}=1$

Hence, the Mach numbers of the two flows are the same.

$$
\frac{\operatorname{Re}_{1}}{\operatorname{Re}_{2}}=\frac{\rho_{1} \mathrm{~V}_{1} \mathrm{c}_{1}}{\rho \mathrm{~V}_{2} \mathrm{c}_{2}}\left(\frac{\mu_{2}}{\mu_{1}}\right)=\frac{\rho_{1} \mathrm{~V}_{1} \mathrm{c}_{1}}{\rho \mathrm{~V}_{2} \mathrm{c}_{2}} \sqrt{\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}}=\left(\frac{1.23}{1.739}\right)\left(\frac{100}{200}\right)\left(\frac{1}{2}\right) \sqrt{\frac{800}{200}}=0.354
$$

The Reynold's numbers are different. Hence, the two flows are not dynamically similar.
1.10 Denote free flight by subscript 1 , and the wind tunnel by subscript 2 . For the lift and drag coefficients to be the same in both cases, the flows must be dynamically similar. Hence

$$
\mathrm{M}_{1}=\mathrm{M}_{2}
$$

and

$$
\operatorname{Re}_{1}=\operatorname{Re}_{2}
$$

For Mach number:

$$
\frac{V_{1}}{a_{1}}=\frac{V_{2}}{a_{2}}
$$

Since a $\alpha \sqrt{T}$, we have

$$
\begin{equation*}
\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~T}_{2}}}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~T}_{1}}}=\frac{250}{\sqrt{223}}=16.7 \tag{1}
\end{equation*}
$$

For Reynolds number: $\frac{\rho_{1} \mathrm{~V}_{1} \mathrm{c}_{1}}{\mu_{1}}=\frac{\rho_{2} \mathrm{~V}_{2} \mathrm{c}}{\mu_{2}}$

Assume, as before, that $\mu \alpha \sqrt{T}$. Hence

$$
\frac{\rho_{2} V_{2} c_{2}}{\sqrt{T_{2}}}=\frac{\rho_{1} V_{1} c_{1}}{\sqrt{T_{1}}}
$$

or,

$$
\frac{\rho_{2} V_{2}}{\sqrt{T_{1}}}=\frac{\rho_{1} V_{1}}{\sqrt{T_{1}}}\left(\frac{c_{1}}{c_{2}}\right)=\frac{(0.414)(250)}{223}\left(\frac{5}{1}\right)
$$

or,

$$
\begin{equation*}
\frac{\rho_{2} V_{2}}{\sqrt{T_{2}}}=34.65 \tag{2}
\end{equation*}
$$

Finally, from the equation of state:

$$
\begin{equation*}
\rho_{2} \mathrm{~T}_{2}=\frac{\mathrm{p}_{2}}{\mathrm{R}}=\frac{1.01 \times 10^{5}}{287}=351.9 \tag{3}
\end{equation*}
$$

Eqs. (1) - (3) represent three equations for the three unknowns, $\rho_{2}, \mathrm{~V}_{2}$, and T_{2}. They are summarized below:

$$
\begin{align*}
& \frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~T}_{2}}}=1.67 \tag{1}\\
& \frac{\rho_{2} \mathrm{~V}_{2}}{\sqrt{\mathrm{~T}_{2}}}=34.65 \tag{2}\\
& \rho_{2} \mathrm{~T}_{2}=351.9 \tag{3}
\end{align*}
$$

From Eq. (3):

$$
\begin{equation*}
\rho_{2}=351.9 / \mathrm{T}_{2} \tag{4}
\end{equation*}
$$

Subst. (4) into (2):

$$
\frac{351.9}{\mathrm{~T}_{2}}\left(\frac{\mathrm{~V}_{2}}{\sqrt{\mathrm{~T}_{2}}}\right)=34.65
$$

Subst. (1) into (5): $\quad \frac{351.9}{\mathrm{~T}_{2}}(16.7)=34.65$
Hence,

$$
\mathrm{T}_{2}=\frac{(351.9)(16.7)}{(34.65)}=169.6^{\circ} \mathrm{K}
$$

From Eq. (1): $\mathrm{V}_{2}=16.7 \sqrt{\mathrm{~T}_{2}}=16.7 \sqrt{169.6}=217.5 \frac{\mathrm{~m}}{\mathrm{sec}}$
From Eq. (3): $\rho_{2}=\frac{351.9}{\mathrm{~T}_{2}}=\frac{351.9}{169.6}=2.07 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$1.11 p_{b}=p_{a}-\rho g \Delta h$

$$
\begin{aligned}
& =1.01 \times 10^{5}-\left(1.36 \times 10^{4}\right)(9.8)(0.2) \\
\mathrm{p}_{\mathrm{b}} & =7.43 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

1.12 Weight = Buoyancy force + lift

$$
\begin{aligned}
& \mathrm{W}=\underbrace{\mathrm{W}=\underbrace{(15,000)}_{\begin{array}{c}
\text { air density } \\
\text { at } 1000 \mathrm{~m} \\
\left(\mathrm{~kg} / \mathrm{m}^{3}\right)
\end{array}}+\mathrm{L}}_{\begin{array}{c}
\text { volume } \\
\left(\mathrm{m}^{3}\right)
\end{array}} \underbrace{(1.1117)}_{\begin{array}{c}
\text { ofceleration } \\
\text { (mavavity } \\
(\mathrm{m} / \mathrm{sec})
\end{array}} \underbrace{(9.8)}=1.634 \times 10^{5} \mathrm{~N} \\
& \mathrm{q}_{\infty}=\frac{1}{2} \rho_{\infty} \mathrm{V}_{\infty}{ }^{2}=\frac{1}{2}(1.1117)(30)^{2}=500 \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~S}=\pi \mathrm{d}^{2} / 4=\pi(14)^{2} / 4=153.9 \mathrm{~m}^{2} \\
& \mathrm{~L}=\mathrm{q}_{\infty} \mathrm{S} \mathrm{C}_{\mathrm{L}}=(500)(153.9)(0.05)=3487 \mathrm{~N}
\end{aligned}
$$

Hence:

$$
W=1.634 \times 10^{5}+3847=1.67 \times 10^{3} \mathrm{~N}
$$

1.13 Let us use the formalism surrounding Eq. (1.16) in the text. In this case, $\mathrm{c}_{\mathrm{d}}=\mathrm{c}_{\mathrm{a}}$, and from Eq. (1.16), neglecting skin friction

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

$$
\begin{equation*}
c_{d}=\frac{1}{c} \int_{L E}^{T E}\left(C_{P_{u}}-C_{p_{\ell}}\right) d y \tag{1}
\end{equation*}
$$

From Eq. (1.13) in the text, Eq. (1) above can be written as

$$
\begin{equation*}
c_{d}=\frac{1}{c} \int_{L E}^{T E}\left(C_{P_{u}}-C_{p_{t}}\right)(-\sin \theta d s) \tag{2}
\end{equation*}
$$

Draw a picture:

Following our sign convention, note that θ is drawn counterclockwise

From the geometry:

$$
-\theta=\pi-\phi
$$

Hence, $\sin (-\theta)=-\sin \theta=\sin (\pi-\theta)=\cos \phi$
Substitute this into Eq. (2), noting also that $\mathrm{ds}=\mathrm{rd} \phi$ and the chord c is twice the radius, $\mathrm{c}=$ 2r. From Eq. (2),

$$
\begin{align*}
& \mathrm{c}_{\mathrm{d}}=\frac{1}{2 r} \int_{\mathrm{LE}}^{T E}\left(\mathrm{C}_{\mathrm{p}_{u}}-\mathrm{C}_{\mathrm{p}_{\mathrm{t}}}\right) \cos \phi \mathrm{rd} \mathrm{\phi} \\
& \mathrm{c}_{\mathrm{d}}=\frac{1}{2} \int_{L E}^{T E}\left(\mathrm{C}_{\mathrm{p}_{u}}-\mathrm{C}_{\mathrm{p}_{t}}\right) \cos \phi \mathrm{d} \phi \\
& \mathrm{c}_{\mathrm{d}}=\frac{1}{2} \int_{\mathrm{LE}}^{T E} C_{\mathrm{p}_{u}} \cos \phi \mathrm{~d} \phi-\frac{1}{2} \int_{\mathrm{LE}}^{T E} C_{\mathrm{p}_{e}} \cos \phi \mathrm{~d} \phi \tag{3}
\end{align*}
$$

Consider the limits of integration for the above integrals. The first integral is evaluated from the leading edge to the trailing edge along the upper surface. Hence, $\phi=0$ at LE and π at TE.

The second integral is evaluated from the leading edge to the trailing edge along the bottom surface. Hence, $\phi=2 \pi$ at LE and π at the TE. Thus, Eq. (3) becomes

$$
\begin{equation*}
\mathrm{c}_{\mathrm{d}}=\frac{1}{2} \int_{0}^{\pi} \mathrm{C}_{\mathrm{p}_{\mathrm{u}}} \cos \phi \mathrm{~d} \phi \quad-\frac{1}{2} \int_{2 \pi}^{\pi} C_{p_{e}} \cos \phi d \phi \tag{4}
\end{equation*}
$$

In Eq. (4),

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{p}_{u}}=2 \cos ^{2} \phi & \text { for } 0 \leq \phi \leq \pi / 2 \\
\mathrm{C}_{\mathrm{p}_{\mathrm{u}}}=0 & \text { for } \frac{\pi}{2} \leq \phi \leq \pi \\
\mathrm{C}_{\mathrm{p}_{e}}=2 \cos ^{2} \phi & \text { for } \frac{3 \pi}{2} \leq \phi \leq 2 \pi \\
\mathrm{C}_{\mathrm{p}_{\varepsilon}}=0 & \text { for } \pi \leq \phi \leq \frac{3 \pi}{2}
\end{array}
$$

Thus, Eq. (4) becomes

$$
\mathrm{c}_{\mathrm{d}}=\int_{0}^{\pi / 2} \cos ^{3} \phi \mathrm{~d} \phi-\int_{2 \pi}^{3 \pi / 2} \cos ^{3} \phi \mathrm{~d} \phi
$$

Since $\cos ^{3} \phi d \phi=\left(\frac{1}{3} \sin \phi\right)\left(\cos ^{2} \phi+2\right)$, Eq. (5) becomes

$$
\begin{aligned}
& c_{d}=\left[\left(\frac{1}{3} \sin \phi\right)\left(\cos ^{2} \phi+2\right)\right]_{0}^{\pi / 2}-\left[\left(\frac{1}{3} \sin \phi\right)\left(\cos ^{2} \phi+2\right]^{3 \pi / 2} \frac{3 \pi}{2 \pi}\right. \\
& c_{d}=\left(\frac{1}{3}\right)(1)(2)-\left(\frac{1}{3}\right)(-1)(2) \\
& c_{d}=4 / 3
\end{aligned}
$$

Consider the arbitrary body sketched above. Consider also the vertical cylinder element inside the body which intercepts the surface area dA_{1} near the top of the body, and dA_{2} near the bottom of the body. The pressures on dA_{1} and dA_{2} are p_{1} and p_{2} respectively, and makes angles θ_{1} and θ_{2} respectively with respect to the vertical line through the middle of dA_{1} and dA_{2}. The net pressure force in the y -direction on this cylinder is:

$$
\begin{equation*}
\mathrm{dF}_{\mathrm{y}}=-\mathrm{p}_{1} \cos \theta_{1} \mathrm{dA}_{1}+\mathrm{p}_{2} \cos \theta_{2} \mathrm{dA}_{2} \tag{1}
\end{equation*}
$$

Let dA_{y} be the projection of dA_{1} and dA_{2} on a plane perpendicular to the y axis.

$$
\mathrm{dA}_{\mathrm{y}}=\cos \theta_{1} \mathrm{dA}_{1}=\cos \theta_{2} \mathrm{dA}_{2}
$$

Thus, Eq. (1) becomes

$$
\begin{equation*}
\mathrm{dF}_{\mathrm{y}}=\left(\mathrm{p}_{2}-\mathrm{p}_{\mathrm{l}}\right) \mathrm{d} \mathrm{~A}_{\mathrm{y}} \tag{2}
\end{equation*}
$$

From the hydrostatic equation

$$
\begin{equation*}
p_{2}-p_{1}=\int_{h_{1}}^{h_{2}} \rho g d y \tag{3}
\end{equation*}
$$

Combining Eqs. (2) and (3),

$$
\begin{equation*}
d F_{y}=\int_{h_{1}}^{h_{2}} \rho g d y d A_{y} \tag{4}
\end{equation*}
$$

However, $\mathrm{dy} \mathrm{dA}_{\mathrm{y}}=\mathrm{d} V=$ element of volume of the body. Thus, the total force in the y direction, F_{y}, is given by Eq. (4) integrated over the volume of the body

$$
\underbrace{\mathrm{F}_{y}}=\underbrace{\oiiint_{y} \rho \mathrm{gd} V}
$$

Force on body Weight of fluid displaced by body.
1.15 From Eq. (1.45)

$$
\begin{align*}
& \mathrm{C}_{\mathrm{L}}=\frac{\mathrm{L}}{\mathrm{q}_{\infty} \mathrm{S}}=\frac{2 \mathrm{~W}}{\rho_{\infty} \mathrm{V}_{\infty}^{2} \mathrm{~S}}=\frac{2(2950)}{(0.002377) \mathrm{V}_{\infty}^{2}(174)} \\
& \mathrm{C}_{\mathrm{L}}=\frac{14265}{\mathrm{~V}_{\infty}{ }^{2}} \tag{1}
\end{align*}
$$

Also,

$$
\begin{equation*}
\mathrm{C}_{\mathrm{D}}=0.025+0.054 \mathrm{C}_{\mathrm{L}}^{2} \tag{2}
\end{equation*}
$$

Tabulate Eqs. (1) and (2) versus velocity.

$\mathrm{V}_{\infty}(\mathrm{ft} / \mathrm{sec})$	C_{L}	C_{D}	$\frac{\mathrm{L}}{\mathrm{D}}=\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{D}}}$
70	2.911	0.483	6.03
90	1.761	0.192	9.17
110	1.179	0.100	11.79
130	0.844	0.063	13.40
150	0.634	0.047	13.49
170	0.494	0.038	13.0
190	0.395	0.033	11.97
210	0.323	0.031	10.42
230	0.270	0.029	9.31
250	0.228	0.028	8.14

These results are plotted on the next page.

Examining this graph, we note, for steady, level flight:

1. The lift coefficient decreases as V_{∞} increases.
2. At lower velocity range, the drag coefficient decreases even faster than the lift coefficient with velocity. (Note that on the graph the scale for C_{D} is one-tenth that for C_{L}.)
3. As a result, the lift-to-drag ratio first increases, goes through a maximum, and then gradually decreases as velocity increases.

It can be shown that the maximum velocity for this airplane is about $265 \mathrm{ft} / \mathrm{sec}$ at sea level. As seen in the graph, the maximum value of L / D occurs around $V_{\infty}=140 \mathrm{ft} / \mathrm{sec}$, which is much lower than the maximum velocity. However, at higher velocity the value of L/D decreases only gradually as V_{∞} increases. This has the practical implication that at higher speeds, even though the value of L / D is less than its maximum, it is still a reasonably high value. The range of the aircraft is proportional to L / D (see for example, Anderson, Aircraft Performance and Design, McGraw-Hill, 1999, or Anderson, Introduction to Flight, $4^{\text {th }}$ ed.,

McGraw-Hill, 2000). To obtain maximum range, the airplane should fly at the velocity for maximum L/D, which for this case is $140 \mathrm{ft} / \mathrm{sec}$. However, one reason to fly in an airplane is to get from one place to another in a reasonably short time. By flying at the low velocity of $\mathrm{V}_{\infty}=140 \mathrm{ft} / \mathrm{sec}$, the flight time may be unacceptably long. By cruising at a higher speed, say $200 \mathrm{ft} / \mathrm{sec}$, the flight time will be cut by 30%, with only an 18% decrease in L/D.
1.16 From Eq. (1.59), in the text,

$$
\tau_{\mathrm{w}}=\mu\left(\frac{\mathrm{dV}}{\mathrm{dy}}\right)_{y=0}
$$

or,

$$
\left(\frac{\mathrm{dV}}{\mathrm{dy}}\right)_{y=0}=\frac{\tau_{w}}{\mu}
$$

As given in Section 1.11, μ at standard sea level temperature is

$$
\mu=1.7894 \times 10^{-5} \mathrm{~kg} /(\mathrm{m})(\mathrm{s})
$$

Thus,

$$
\left(\frac{\mathrm{dV}}{\mathrm{dy}}\right)_{y=0}=\frac{\tau_{w}}{\mu}=\frac{282}{1.7894 \times 10^{-5}}=1.576 \times 10^{7} \mathrm{sec}^{-1}
$$

1.17 From Eq. (1.60)

$$
\left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{y=0}=-\frac{\dot{q}_{w}}{k}
$$

The heat transfer into the surface is $-0.03 \mathrm{MW} / \mathrm{m}^{2}$, and from Section 1.11 , the thermal conductivity at standard sea level temperature is

$$
\begin{aligned}
& \mathrm{k}=2.53 \times 10^{-2} \mathrm{~J} /(\mathrm{m})(\mathrm{s})(\mathrm{K}) \\
& \dot{q}_{w}=-0.03 \mathrm{MW} / \mathrm{m}^{2}=-0.03 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2} \\
& \left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{y=0}=\frac{0.03 \times 10^{6}}{2.53 \times 10^{-2}}=1.186 \times 10^{6} \frac{\mathrm{~K}}{\mathrm{~m}}
\end{aligned}
$$

1.18 (a) At standard sea level, from Appendix $E, \rho_{\infty}=0.002377$ slug/(ft $\left.{ }^{3}\right)$. Also, from Section $1.11, \mu_{\infty}=3.7373 \times 10^{-7}$ slug/(ft)(s). Putting the velocity in consistent units,

$$
V_{\infty}=(200) \frac{88}{60}=293.3 \mathrm{ft} / \mathrm{sec}
$$

Thus,

$$
\operatorname{Re}=\frac{\rho_{\infty} \mathrm{V}_{\infty} \mathrm{c}}{\mu_{\infty}}=\frac{(0.002377)(293.3)(14.25)}{3.7373 \times 10^{-7}}
$$

$$
\operatorname{Re}=2.66 \times 10^{7}
$$

(b) $\quad \operatorname{Re}=\frac{\rho_{\infty} V_{\infty} c}{\mu_{\infty}}=\frac{(0.002377)(1340)(21.5)}{3.7373 \times 10^{-7}}$

$$
\operatorname{Re}=1.83 \times 10^{8}
$$

1.19 From Figure 1.65, we have the normal and tangential force coefficients at 3-degres angle of attack given as 0.546 and 0 respectively. From Eqs. (1.1) and (1.2), written in terms of force coefficients, and using Lilienthal's nomenclature:

$$
\begin{aligned}
& C_{L}=\eta \cos \alpha-\theta \sin \alpha \\
& C_{D}=\eta \sin \alpha+\theta \cos \alpha
\end{aligned}
$$

The ratio of lift-to-drag is

$$
\begin{aligned}
& \frac{\mathrm{L}}{\mathrm{D}}=\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{D}}}=\frac{\eta \cos \alpha-\theta \sin \alpha}{\eta \sin \alpha+\theta \cos \alpha} \\
& \frac{\mathrm{L}}{\mathrm{D}}=\frac{0.546 \cos 3^{3}-0}{0.546 \sin 3^{3}+0}=\cot 3^{\circ}=19.08
\end{aligned}
$$

At $\alpha=2^{\circ}$, from the Lilienthal Table, $\eta=0.489$ and $\theta=0.008$

$$
\begin{aligned}
& \frac{\mathrm{L}}{\mathrm{D}}=\frac{0.489 \cos 2^{\circ}-0.008 \sin 2^{\circ}}{0.489 \sin 2^{\circ}+0.008 \cos 2^{\circ}}=\frac{0.4887-2.79 \times 10^{-4}}{0.0171+8 \times 10^{-3}} \\
& \frac{\mathrm{~L}}{\mathrm{D}}=\frac{0.488}{0.0251}=19.44
\end{aligned}
$$

At $\alpha=1^{0}, \eta=0.434$ and $\theta=0.016$

$$
\begin{aligned}
& \frac{L}{D}=\frac{0.434 \cos 1^{\circ}-0.016 \sin 1^{\circ}}{0.434 \sin 1^{\circ}+0.016 \cos 1^{\circ}} \\
& \frac{L}{D}=\frac{0.4339-2.792 \times 10^{-4}}{7.574 \times 10^{-3}+0.01599}=\frac{0.4336}{0.023356}=18.56
\end{aligned}
$$

At $\alpha=4^{0}, \eta=0.6$ and $\theta=0.007$

$$
\begin{aligned}
& \frac{\mathrm{L}}{\mathrm{D}}=\frac{0.6 \cos 4^{\circ}+0.007 \sin 4^{\circ}}{0.6 \sin 4^{\circ}+0.007 \cos 4^{\circ}}=\frac{0.5985+4.883 \times 10^{-4}}{0.04185-6.9829 \times 10^{-3}} \\
& \frac{\mathrm{~L}}{\mathrm{D}}=\frac{0.59899}{0.03487}=17.18
\end{aligned}
$$

So we have the following tabulation:

$\underline{\alpha-\text { degrees }}$	$\underline{L / D}$
1°	18.56
2°	19.44
3°	19.08
4°	17.18

The Wright brothers chose a three-degree angle of attack for their design point because, from the Lilienthal Table, it corresponded very nearly to the maximum, L/D.

