INTRODUCTION

LINEAR

 ALGEBRAFifth Edition

Gilbert Strang

Massachusetts Institute of Technology
math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/~gs
www.wellesleycambridge.com email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 1.1, page 8

1 The combinations give (a) a line in $\mathbf{R}^{3} \quad$ (b) a plane in $\mathbf{R}^{3} \quad$ (c) all of \mathbf{R}^{3}.
$2 \boldsymbol{v}+\boldsymbol{w}=(2,3)$ and $\boldsymbol{v}-\boldsymbol{w}=(6,-1)$ will be the diagonals of the parallelogram with \boldsymbol{v} and \boldsymbol{w} as two sides going out from $(0,0)$.

3 This problem gives the diagonals $\boldsymbol{v}+\boldsymbol{w}$ and $\boldsymbol{v}-\boldsymbol{w}$ of the parallelogram and asks for the sides: The opposite of Problem 2. In this example $\boldsymbol{v}=(3,3)$ and $\boldsymbol{w}=(2,-2)$.
$43 \boldsymbol{v}+\boldsymbol{w}=(7,5)$ and $c \boldsymbol{v}+d \boldsymbol{w}=(2 c+d, c+2 d)$.
$5 \boldsymbol{u}+\boldsymbol{v}=(-2,3,1)$ and $\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w}=(0,0,0)$ and $2 \boldsymbol{u}+2 \boldsymbol{v}+\boldsymbol{w}=($ add first answers $)=$ $(-2,3,1)$. The vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are in the same plane because a combination gives $(0,0,0)$. Stated another way: $\boldsymbol{u}=-\boldsymbol{v}-\boldsymbol{w}$ is in the plane of \boldsymbol{v} and \boldsymbol{w}.

6 The components of every $c \boldsymbol{v}+d \boldsymbol{w}$ add to zero because the components of \boldsymbol{v} and of \boldsymbol{w} add to zero. $c=3$ and $d=9$ give $(3,3,-6)$. There is no solution to $c \boldsymbol{v}+d \boldsymbol{w}=(3,3,6)$ because $3+3+6$ is not zero.

7 The nine combinations $c(2,1)+d(0,1)$ with $c=0,1,2$ and $d=(0,1,2)$ will lie on a lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

8 The other diagonal is $\boldsymbol{v}-\boldsymbol{w}$ (or else $\boldsymbol{w}-\boldsymbol{v}$). Adding diagonals gives $2 \boldsymbol{v}$ (or $2 \boldsymbol{w}$).
9 The fourth corner can be $(4,4)$ or $(4,0)$ or $(-2,2)$. Three possible parallelograms!
$10 \boldsymbol{i}-\boldsymbol{j}=(1,1,0)$ is in the base ($x-y$ plane). $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}=(1,1,1)$ is the opposite corner from $(0,0,0)$. Points in the cube have $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.

11 Four more corners $(1,1,0),(1,0,1),(0,1,1),(1,1,1)$. The center point is $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Centers of faces are $\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and $\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(1, \frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(\frac{1}{2}, 1, \frac{1}{2}\right)$.

12 The combinations of $\boldsymbol{i}=(1,0,0)$ and $\boldsymbol{i}+\boldsymbol{j}=(1,1,0)$ fill the $x y$ plane in $x y z$ space.
13 Sum $=$ zero vector. Sum $=-2: 00$ vector $=8: 00$ vector. 2:00 is 30° from horizontal $=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)=(\sqrt{3} / 2,1 / 2)$.

14 Moving the origin to 6:00 adds $\boldsymbol{j}=(0,1)$ to every vector. So the sum of twelve vectors changes from $\mathbf{0}$ to $12 \boldsymbol{j}=(0,12)$.

15 The point $\frac{3}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is three-fourths of the way to \boldsymbol{v} starting from \boldsymbol{w}. The vector $\frac{1}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is halfway to $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. The vector $\boldsymbol{v}+\boldsymbol{w}$ is $2 \boldsymbol{u}$ (the far corner of the parallelogram).

16 All combinations with $c+d=1$ are on the line that passes through \boldsymbol{v} and \boldsymbol{w}. The point $\boldsymbol{V}=-\boldsymbol{v}+2 \boldsymbol{w}$ is on that line but it is beyond \boldsymbol{w}.

17 All vectors $c \boldsymbol{v}+c \boldsymbol{w}$ are on the line passing through (0,0) and $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. That line continues out beyond $\boldsymbol{v}+\boldsymbol{w}$ and back beyond $(0,0)$. With $c \geq 0$, half of this line is removed, leaving a ray that starts at $(0,0)$.

18 The combinations $c \boldsymbol{v}+d \boldsymbol{w}$ with $0 \leq c \leq 1$ and $0 \leq d \leq 1$ fill the parallelogram with sides \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$ then $c \boldsymbol{v}+d \boldsymbol{w}$ fills the unit square. But when $\boldsymbol{v}=(a, 0)$ and $\boldsymbol{w}=(b, 0)$ these combinations only fill a segment of a line.

19 With $c \geq 0$ and $d \geq 0$ we get the infinite "cone" or "wedge" between \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$, then the cone is the whole quadrant $x \geq 0, y \geq$ 0. Question: What if $\boldsymbol{w}=-\boldsymbol{v}$? The cone opens to a half-space. But the combinations of $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(-1,0)$ only fill a line.

20 (a) $\frac{1}{3} \boldsymbol{u}+\frac{1}{3} \boldsymbol{v}+\frac{1}{3} \boldsymbol{w}$ is the center of the triangle between $\boldsymbol{u}, \boldsymbol{v}$ and $\boldsymbol{w} ; \frac{1}{2} \boldsymbol{u}+\frac{1}{2} \boldsymbol{w}$ lies between \boldsymbol{u} and $\boldsymbol{w} \quad$ (b) To fill the triangle keep $c \geq 0, d \geq 0, e \geq 0$, and $c+d+e=\mathbf{1}$.

21 The sum is $(\boldsymbol{v}-\boldsymbol{u})+(\boldsymbol{w}-\boldsymbol{v})+(\boldsymbol{u}-\boldsymbol{w})=$ zero vector. Those three sides of a triangle are in the same plane!

22 The vector $\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w})$ is outside the pyramid because $c+d+e=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}>1$.
23 All vectors are combinations of $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ as drawn (not in the same plane). Start by seeing that $c \boldsymbol{u}+d \boldsymbol{v}$ fills a plane, then adding $e \boldsymbol{w}$ fills all of \mathbf{R}^{3}.

24 The combinations of \boldsymbol{u} and \boldsymbol{v} fill one plane. The combinations of \boldsymbol{v} and \boldsymbol{w} fill another plane. Those planes meet in a line: only the vectors $c \boldsymbol{v}$ are in both planes.

25 (a) For a line, choose $\boldsymbol{u}=\boldsymbol{v}=\boldsymbol{w}=$ any nonzero vector \quad (b) For a plane, choose \boldsymbol{u} and \boldsymbol{v} in different directions. A combination like $\boldsymbol{w}=\boldsymbol{u}+\boldsymbol{v}$ is in the same plane.

26 Two equations come from the two components: $c+3 d=14$ and $2 c+d=8$. The solution is $c=2$ and $d=4$. Then $2(1,2)+4(3,1)=(14,8)$.

27 A four-dimensional cube has $2^{4}=16$ corners and $2 \cdot 4=8$ three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

28 There are $\mathbf{6}$ unknown numbers $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}$. The six equations come from the components of $\boldsymbol{v}+\boldsymbol{w}=(4,5,6)$ and $\boldsymbol{v}-\boldsymbol{w}=(2,5,8)$. Add to find $2 \boldsymbol{v}=(6,10,14)$ so $\boldsymbol{v}=(3,5,7)$ and $\boldsymbol{w}=(1,0,-1)$.

29 Two combinations out of infinitely many that produce $\boldsymbol{b}=(0,1)$ are $-2 \boldsymbol{u}+\boldsymbol{v}$ and $\frac{1}{2} \boldsymbol{w}-\frac{1}{2} \boldsymbol{v}$. No, three vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ in the $x-y$ plane could fail to produce \boldsymbol{b} if all three lie on a line that does not contain \boldsymbol{b}. Yes, if one combination produces \boldsymbol{b} then two (and infinitely many) combinations will produce \boldsymbol{b}. This is true even if $\boldsymbol{u}=\mathbf{0}$; the combinations can have different $c \boldsymbol{u}$.

30 The combinations of \boldsymbol{v} and \boldsymbol{w} fill the plane unless \boldsymbol{v} and \boldsymbol{w} lie on the same line through $(0,0)$. Four vectors whose combinations fill 4-dimensional space: one example is the "standard basis" $(1,0,0,0),(0,1,0,0),(0,0,1,0)$, and ($0,0,0,1$).

31 The equations $c \boldsymbol{u}+d \boldsymbol{v}+e \boldsymbol{w}=\boldsymbol{b}$ are

$$
\begin{array}{rlr}
2 c-d=1 & \text { So } d=2 e & c=3 / 4 \\
-c+2 d-e=0 & \text { then } c=3 e & d=2 / 4 \\
-d+2 e=0 & \text { then } 4 e=1 & e=1 / 4
\end{array}
$$

Problem Set 1.2, page 18

$\mathbf{1} \boldsymbol{u} \cdot \boldsymbol{v}=-2.4+2.4=0, \boldsymbol{u} \cdot \boldsymbol{w}=-.6+1.6=1, \boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{w}=$ $0+1, \boldsymbol{w} \cdot \boldsymbol{v}=4-6=-2=\boldsymbol{v} \cdot \boldsymbol{w}$.
$2\|\boldsymbol{u}\|=1$ and $\|\boldsymbol{v}\|=5$ and $\|\boldsymbol{w}\|=\sqrt{5}$. Then $|\boldsymbol{u} \cdot \boldsymbol{v}|=0<(1)(5)$ and $|\boldsymbol{v} \cdot \boldsymbol{w}|=10<$ $5 \sqrt{5}$, confirming the Schwarz inequality.

