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Solutions to Exercises

The combinations give (a) alineRR® (b) aplaneinR® (c) all of R3.

v+ w = (2,3) andv — w = (6, —1) will be the diagonals of the parallelogram with

v andw as two sides going out froif, 0).

This problem gives the diagonats+ w andv — w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this exampie (3, 3) andw = (2, —2).
3v+ w = (7,5) andcv + dw = (2¢ + d, c + 2d).

u+v = (-2,3,1) andu+v+w = (0,0,0) and2u+2v+w = ( add first answeps=
(—2,3,1). The vectorsu, v, w are in the same plane because a combination gives

(0,0,0). Stated another ways = —v — w is in the plane ob andw.

The components of everyw + dw add to zero because the components ahd ofw
addto zeroc = 3 andd = 9 give(3, 3, —6). There is no solution tev+dw = (3, 3, 6)
because& + 3 + 6 is not zero.

The nine combination&(2, 1) + d(0, 1) with ¢ = 0,1,2 andd = (0,1, 2) will lie on a

lattice. If we took all whole numbeksandd, the lattice would lie over the whole plane.
The other diagonal is — w (or elsew — v). Adding diagonals give2v (or 2w).
The fourth corner can bl, 4) or (4,0) or (-2, 2). Three possible parallelograms!

i —j = (1,1,0) is in the basex-y plane).: + 7 + k = (1,1, 1) is the opposite corner

from (0,0,0). Points inthe cube hawe< 2 < 1,0 <y <1,0< 2z < 1.

Four more corner$l,1,0), (1,0,1),(0,1,1),(1,1,1). The center point i§
7%7 (

1),(1,4,3) and(3,0,3),

Centers of faces arg, £,0), (3, ,1) and(0 , %

’ 5
The combinations of = (1,0,0) andi + j = (1, 1, 0) fill the xy plane inzyz space.
Sum= zero vector. Sum= —2:00 vector= 8:00 vector. 2:00 is 30° from horizontal

= (cos Z,sin Z) = (v/3/2,1/2).

Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors

changes fron® to 125 = (0, 12).
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The pothv + i is three-fourths of the way te starting fromw. The vector

4
parallelogram).

1 1 . 1 1 .
—v+ i is halfway tou = 7Y + W The vectow + w is 2u (the far corner of the

All combinations withc + d = 1 are on the line that passes throughand w.

The pointV = —wv + 2w is on that line but it is beyoneb.

Al vectors cv + cw are on the line passing through, 0) andu = v + 1w. That
line continues out beyond + w and back beyon¢D, 0). With ¢ > 0, half of this line

is removed, leaving ey that starts af0, 0).

The combinationsv + dw with 0 < ¢ < 1 and0 < d < 1 fill the parallelogramwith
sidesv andw. For example, ifv = (1,0) andw = (0, 1) thencv + dw fills the unit
square. But whem = (a,0) andw = (b, 0) these combinations only fill a segment of

aline.

With ¢ > 0 andd > 0 we get the infinite “cone” or “wedge” betweanandw. For
example, ifv = (1,0) andw = (0, 1), then the cone is the whole quadrant 0, y >

0. Question What if w = —v? The cone opens to a half-space. But the combinations
of v = (1,0) andw = (—1,0) only fill aline.

(@) u + 1v + 1w is the center of the triangle betweanv andw; u + 1w lies
betweernu andw (b) Tofillthe triangle keep>0,d>0,e>0,andc+d+e = 1.
The sum ifv —u) + (w —v) + (u —w) = zero vector. Those three sides of a triangle
are in the same plane!

The vector} (u + v + w) is outsidethe pyramid because+ d+e =1+ 1 + 1 > 1.

All vectors are combinations ef, v, w as drawn (not in the same plane). Start by
seeing thatu + du fills a plane, then addinguw fills all of R3.

The combinations ofs andw fill one plane. The combinations efandw fill another

plane. Those planes meet itirge: only the vectorgv are in both planes.

() For aline, choose = v = w = any nonzero vector (b) For a plane, choose

u andw in different directions. A combination likes = u + v is in the same plane.
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Solutions to Exercises

Two equations come from the two components+ 3d = 14 and2c¢ + d = 8. The

solutionisc = 2 andd = 4. Then2(1,2) + 4(3,1) = (14, 8).

A four-dimensional cube ha&* = 16 corners an® - 4 = 8 three-dimensional faces

and24 two-dimensional faces arg® edges in Worked Examplz4 A.

There ares unknown numbers,, vo, v3, w1, wo, w3. The Six equations come from the
components ob + w = (4,5,6) andv — w = (2,5,8). Add to find2v = (6, 10, 14)
sov = (3,5,7) andw = (1,0, —1).

Two combinations out of infinitely many that prodube= (0,1) are —2u + v and
1w — fv. No, three vectoras, v, w in the z-y plane could fail to producé if all
three lie on a line that does not contéinYes if one combination producdsthen two
(and infinitely many) combinations will produde This is true even ifu = 0; the

combinations can have differesi:.

The combinations of andw fill the planeunlessy andw lie on the same line through
(0,0). Four vectors whose combinations fildimensional space: one example is the

“standard basis(1, 0, 0, 0), (0,1, 0,0), (0,0, 1,0), and(0, 0,0, 1).

The equationsu + dv + ew = b are

2¢ —d =1 Sod = 2e c=3/4

—c+2d —e=0 thenc = 3e d=2/4

—d+2e=0 thende =1 e=1/4
u-v=-24424=0uv-w=—-6+16=1Lu-(v+w)=u-v+u-w=

0+l,w-v=4—-6=-2=v-w.

|u|| = 1 and||v| = 5 and|jw]|| = V5. Then|u - v| = 0 < (1)(5) and|v - w| = 10 <
5v/5, confirming the Schwarz inequality.
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