Instructor's Manual to Accompany

Chapter 1

1. $S=\{(R, R),(R, G),(R, B),(G, R),(G, G),(G, B),(B, R),(B, G),(B, B)\}$ The probability of each point in S is $1 / 9$.
2. $S=\{(R, G),(R, B),(G, R),(G, B),(B, R),(B, G)\}$
3. $S=\left\{\left(e_{1}, e_{2}, \ldots, e_{n}\right), n \geq 2\right\}$ where $e_{i} \in$ (heads, tails $\}$. In addition, $e_{n}=e_{n-1}=$ heads and for $i=1, \ldots, n-2$ if $e_{i}=$ heads, then $e_{i+1}=$ tails.

$$
\begin{aligned}
P\{4 \text { tosses }\} & =P\{(t, t, h, h)\}+P\{(h, t, h, h)\} \\
& =2\left[\frac{1}{2}\right]^{4}=\frac{1}{8}
\end{aligned}
$$

4. (a) $F(E \cup G)^{c}=F E^{c} G^{c}$
(b) $E F G^{c}$
(c) $E \cup F \cup G$
(d) $E F \cup E G \cup F G$
(e) $E F G$
(f) $(E \cup F \cup G)^{c}=E^{c} F^{c} G^{c}$
(g) $(E F)^{c}(E G)^{c}(F G)^{c}$
(h) $(E F G)^{c}$
5. $\frac{3}{4}$. If he wins, he only wins $\$ 1$, while if he loses, he loses $\$ 3$.
6. If $E(F \cup G)$ occurs, then E occurs and either F or G occur; therefore, either $E F$ or $E G$ occurs and so

$$
E(F \cup G) \subset E F \cup E G
$$

Similarly, if $E F \cup E G$ occurs, then either $E F$ or $E G$ occurs. Thus, E occurs and either F or G occurs; and so $E(F \cup G)$ occurs. Hence,

$$
E F \cup E G \subset E(F \cup G)
$$

which together with the reverse inequality proves the result.
7. If $(E \cup F)^{c}$ occurs, then $E \cup F$ does not occur, and so E does not occur (and so E^{c} does); F does not occur (and so F^{c} does) and thus E^{c} and F^{c} both occur. Hence,

$$
(E \cup F)^{c} \subset E^{c} F^{c}
$$

If $E^{c} F^{c}$ occurs, then E^{c} occurs (and so E does not), and F^{c} occurs (and so F does not). Hence, neither E or F occurs and thus $(E \cup F)^{c}$ does. Thus,

$$
E^{c} F^{c} \subset(E \cup F)^{c}
$$

and the result follows.
8. $1 \geq P(E \cup F)=P(E)+P(F)-P(E F)$
9. $F=E \cup F E^{c}$, implying since E and $F E^{c}$ are disjoint that $P(F)=P(E)+$ $P(F E)^{c}$.
10. Either by induction or use

$$
\bigcup_{1}^{n} E_{i}=E_{1} \cup E_{1}^{c} E_{2} \cup E_{1}^{c} E_{2}^{c} E_{3} \cup \cdots \cup E_{1}^{c} \cdots E_{n-1}^{c} E_{n}
$$

and as each of the terms on the right side are mutually exclusive:

$$
\begin{aligned}
P\left(\cup_{\mathrm{i}} E_{i}\right)= & P\left(E_{1}\right)+P\left(E_{1}^{c} E_{2}\right)+P\left(E_{1}^{c} E_{2}^{c} E_{3}\right)+\cdots \\
& +P\left(E_{1}^{c} \cdots E_{n-1}^{c} E_{n}\right) \\
\leq & P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots+P\left(E_{n}\right) \quad \text { (why?) }
\end{aligned}
$$

11. $P\{$ sum is $i\}= \begin{cases}\frac{i-1}{36}, & i=2, \ldots, 7 \\ \frac{13-i}{36}, & i=8, \ldots, 12\end{cases}$
12. Either use hint or condition on initial outcome as:

$$
\begin{aligned}
& P\{E \text { before } F\} \\
& \quad=P\{E \text { before } F \mid \text { initial outcome is } E\} P(E) \\
& \quad+P\{E \text { before } F \mid \text { initial outcome is } F\} P(F) \\
& \quad+P\{E \text { before } F \mid \text { initial outcome neither } \mathrm{E} \text { or } F\}[1-P(E)-P(F)] \\
& \quad=1 \cdot P(E)+0 \cdot P(F)+P\{E \text { before } F\} \\
& \quad=[1-P(E)-P(F)]
\end{aligned}
$$

Therefore, $P\{E$ before $F\}=\frac{P(E)}{P(E)+P(F)}$
13. Condition an initial toss

$$
P\{\text { win }\}=\sum_{i=2}^{12} P\{\text { win } \mid \text { throw } i\} P\{\text { throw } i\}
$$

Now,

$$
\begin{aligned}
& P\{\text { win } \mid \text { throw } i\}=P\{i \text { before } 7\} \\
& \quad=\left\{\begin{array}{rl}
0 & i=2,12 \\
\frac{i-1}{5+1} & i=3, \ldots, 6 \\
1 & i=7,11 \\
\frac{13-i}{19-1} & i=8, \ldots, 10
\end{array}\right.
\end{aligned}
$$

where above is obtained by using Problems 11 and 12.

$$
P\{\operatorname{win}\} \approx .49
$$

14. $P\{A$ wins $\}=\sum_{n=0}^{\infty} P\{A$ wins on $(2 n+1)$ st toss $\}$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}(1-P)^{2 n} P \\
& =P \sum_{n=0}^{\infty}\left[(1-P)^{2}\right]^{n} \\
& =P \frac{1}{1-(1-P)^{2}} \\
& =\frac{P}{2 P-P^{2}} \\
& =\frac{1}{2-P} \\
P\{B \text { wins }\} & =1-P\{A \text { wins }\} \\
& =\frac{1-P}{2-P}
\end{aligned}
$$

16. $P(E \cup F)=P\left(E \cup F E^{c}\right)$

$$
=P(E)+P\left(F E^{c}\right)
$$

since E and $F E^{c}$ are disjoint. Also,

$$
\begin{aligned}
P(E) & =P\left(F E \cup F E^{c}\right) \\
& =P(F E)+P\left(F E^{c}\right) \text { by disjointness }
\end{aligned}
$$

Hence,

$$
P(E \cup F)=P(E)+P(F)-P(E F)
$$

17. $\operatorname{Prob}\{$ end $\}=1-\operatorname{Prob}\{$ continue $\}$

$$
\begin{aligned}
& =1-P(\{H, H, H\} \cup\{T, T, T\}) \\
& =1-[\operatorname{Prob}(H, H, H)+\operatorname{Prob}(T, T, T)] .
\end{aligned}
$$

$$
\begin{aligned}
\text { Fair coin: } \operatorname{Prob}\{\mathrm{end}\} & =1-\left[\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}\right] \\
& =\frac{3}{4} \\
\text { Biased coin: } P\{\mathrm{end}\} & =1-\left[\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}\right] \\
& =\frac{9}{16}
\end{aligned}
$$

18. Let $B=$ event both are girls; $E=$ event oldest is girl; $L=$ event at least one is a girl.
(a) $P(B \mid E)=\frac{P(B E)}{P(E)}=\frac{P(B)}{P(E)}=\frac{1 / 4}{1 / 2}=\frac{1}{2}$
(b) $P(L)=1-P($ no girls $)=1-\frac{1}{4}=\frac{3}{4}$,

$$
P(B \mid L)=\frac{P(B L)}{P(L)}=\frac{P(B)}{P(L)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

19. $E=$ event at least 1 six $P(E)$
$=\frac{\text { number of ways to get } E}{\text { number of samples pts }}=\frac{11}{36}$
$D=$ event two faces are different $P(D)$
$=1-\operatorname{Prob}$ (two faces the same)
$=1-\frac{6}{36}=\frac{5}{6} P(E \mid D)=\frac{P(E D)}{P(D)}=\frac{10 / 36}{5 / 6}=\frac{1}{3}$
20. Let $E=$ event same number on exactly two of the dice; $S=$ event all three numbers are the same; $D=$ event all three numbers are different. These three events are mutually exclusive and define the whole sample space. Thus, $1=P(D)+P(S)+$ $P(E), P(S)=6 / 216=1 / 36$; for D have six possible values for first die, five for second, and four for third.
\therefore Number of ways to get $D=6 \cdot 5 \cdot 4=120$.

$$
\begin{aligned}
P(D) & =120 / 216=20 / 36 \\
\therefore P(E) & =1-P(D)-P(S) \\
& =1-\frac{20}{36}-\frac{1}{36}=\frac{5}{12}
\end{aligned}
$$

21. Let $C=$ event person is color blind.

$$
\begin{aligned}
P(\text { Male } \mid C) & =\frac{P(C \mid \text { Male }) P(\text { Male })}{P(C \mid \text { Male } P(\text { Male })+P(C \mid \text { Female }) P(\text { Female })} \\
& =\frac{.05 \times .5}{.05 \times .5+.0025 \times .5} \\
& =\frac{2500}{2625}=\frac{20}{21}
\end{aligned}
$$

22. Let trial 1 consist of the first two points; trial 2 the next two points, and so on. The probability that each player wins one point in a trial is $2 p(1-p)$. Now a total of $2 n$ points are played if the first $(a-1)$ trials all result in each player winning one of the points in that trial and the nth trial results in one of the players winning both points. By independence, we obtain
$P\{2 n$ points are needed $\}$

$$
=(2 p(1-p))^{n-1}\left(p^{2}+(1-p)^{2}\right), \quad n \geq 1
$$

The probability that A wins on trial n is $(2 p(1-p))^{n-1} p^{2}$ and so

$$
\begin{aligned}
P\{A \text { wins }\} & =p^{2} \sum_{n=1}^{\infty}(2 p(1-p))^{n-1} \\
& =\frac{p^{2}}{1-2 p(1-p)}
\end{aligned}
$$

23. $P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)$

$$
\begin{aligned}
& =P\left(E_{1}\right) \frac{P\left(E_{1} E_{2}\right)}{P\left(E_{1}\right)} \frac{P\left(E_{1} E_{2} E_{3}\right)}{P\left(E_{1} E_{2}\right)} \ldots \frac{P\left(E_{1} \ldots E_{n}\right)}{P\left(E_{1} \ldots E_{n-1}\right)} \\
& =P\left(E_{1} \ldots E_{n}\right)
\end{aligned}
$$

24. Let a signify a vote for A and b one for B.
(a) $P_{2,1}=P\{a, a, b\}=1 / 3$
(b) $P_{3,1}=P\{a, a\}=(3 / 4)(2 / 3)=1 / 2$
(c) $P_{3,2}=P\{a, a, a\}+P\{a, a, b, a\}$
$=(3 / 5)(2 / 4)[1 / 3+(2 / 3)(1 / 2)]=1 / 5$
(d) $P_{4,1}=P\{a, a\}=(4 / 5)(3 / 4)=3 / 5$
(e) $P_{4,2}=P\{a, a, a\}+P\{a, a, b, a\}$
$=(4 / 6)(3 / 5)[2 / 4+(2 / 4)(2 / 3)]=1 / 3$
(f) $P_{4,3}=P\{$ always ahead $\mid a, a\}(4 / 7)(3 / 6)$
$=(2 / 7)[1-P\{a, a, a, b, b, b \mid a, a\}$ $-P\{a, a, b, b \mid a, a\}-P\{a, a, b, a, b, b \mid a, a\}]$
$=(2 / 7)[1-(2 / 5)(3 / 4)(2 / 3)(1 / 2)$ $-(3 / 5)(2 / 4)-(3 / 5)(2 / 4)(2 / 3)(1 / 2)]$
$=1 / 7$
(g) $P_{5,1}=P\{a, a\}=(5 / 6)(4 / 5)=2 / 3$
(h) $P_{5,2}=P\{a, a, a\}+P\{a, a, b, a\}$
$=(5 / 7)(4 / 6)[(3 / 5)+(2 / 5)(3 / 4)]=3 / 7$
By the same reasoning we have
(i) $P_{5,3}=1 / 4$
(j) $P_{5,4}=1 / 9$
(k) In all the cases above, $P_{n, m}=\frac{n-n}{n+n}$
25. (a) $P\{$ pair $\}=P\{$ second card is same denomination as first $\}$

$$
=3 / 51
$$

(b) P \{pair|different suits\}

$$
\begin{aligned}
& =\frac{P\{\text { pair, different suits }\}}{P\{\text { different suits }\}} \\
& =P\{\text { pair }\} / P\{\text { different suits }\} \\
& =\frac{3 / 51}{39 / 51}=1 / 13
\end{aligned}
$$

26. $P\left(E_{1}\right)=\binom{4}{1}\binom{48}{12} /\binom{52}{13}=\frac{39.38 .37}{51.50 .49}$
$P\left(E_{2} \mid E_{1}\right)=\binom{3}{1}\binom{36}{12} /\binom{39}{13}=\frac{26.25}{38.37}$
$P\left(E_{3} \mid E_{1} E_{2}\right)=\binom{2}{1}\binom{24}{12} /\binom{26}{13}=13 / 25$
$P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)=1$
$P\left(E_{1} E_{2} E_{3} E_{4}\right)=\frac{39.26 .13}{51.50 .49}$
27. $P\left(E_{1}\right)=1$
$P\left(E_{2} \mid E_{1}\right)=39 / 51$, since 12 cards are in the ace of spades pile and 39 are not.
$P\left(E_{3} \mid E_{1} E_{2}\right)=26 / 50$, since 24 cards are in the piles of the two aces and 26 are in the other two piles.

$$
P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)=13 / 49
$$

So

$$
P\{\text { each pile has an ace }\}=(39 / 51)(26 / 50)(13 / 49)
$$

28. Yes. $P(A \mid B)>P(A)$ is equivalent to $P(A B)>P(A) P(B)$, which is equivalent to $P(B \mid A)>P(B)$.
29. (a) $P(E \mid F)=0$
(b) $P(E \mid F)=P(E F) / P(F)=P(E) / P(F) \geq P(E)=.6$
(c) $P(E \mid F)=P(E F) / P(F)=P(F) / P(F)=1$
30. (a) $P\{$ George \mid exactly 1 hit $\}=\frac{P\{\text { George, not Bill }\}}{P\{\text { exactly } 1\}}$

$$
\begin{aligned}
& =\frac{P\{G, \operatorname{not} B\}}{P\{G, \operatorname{not} B\}+P\{B, \operatorname{not} G)\}} \\
& =\frac{(.4)(.3)}{(.4)(.3)+(.7)(.6)} \\
& =2 / 9
\end{aligned}
$$

(b) $P\{G \mid$ hit $\}=P\{G$, hit $\} / P$ hit $\}$

$$
\begin{aligned}
& =P\{G\} / P\{\text { hit }\}=.4 /[1-(.3)(.6)] \\
& =20 / 41
\end{aligned}
$$

31. Let $S=$ event sum of dice is $7 ; F=$ event first die is 6 .

$$
\begin{aligned}
P(S) & =\frac{1}{6} P(F S)=\frac{1}{36} P(F \mid S)=\frac{P(F \mid S)}{P(S)} \\
& =\frac{1 / 36}{1 / 6}=\frac{1}{6}
\end{aligned}
$$

32. Let $E_{i}=$ event person i selects own hat. P (no one selects own hat)

$$
\begin{aligned}
= & 1-P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right) \\
= & 1-\left[\sum_{i_{1}} P\left(E i_{1}\right)-\sum_{i_{1}<i_{2}} P\left(E i_{1} E i_{2}\right)+\cdots\right. \\
& \left.+(-1)^{n+1} P\left(E_{1} E_{2} E_{n}\right)\right] \\
= & 1-\sum_{i_{1}} P\left(E i_{1}\right)-\sum_{i_{1}<i_{2}} P\left(E i_{1} E i_{2}\right) \\
& -\sum_{i_{1}<i_{2}<i_{3}} P\left(E i_{1} E i_{2} E i_{3}\right)+\cdots \\
& +(-1)^{n} P\left(E_{1} E_{2} E_{n}\right)
\end{aligned}
$$

Let $k \in\{1,2, \ldots, n\} . P\left(E i_{1} E I_{2} E i_{k}\right)=$ number of ways k specific men can select own hats \div total number of ways hats can be arranged $=(n-k)!/ n!$. Number of terms in summation $\sum_{i_{1}<i_{2}<\cdots<i_{k}}=$ number of ways to choose k variables out of n variables $=\left[\begin{array}{l}n \\ k\end{array}\right]=n!/ k!(n-k)!$.
Thus,

$$
\begin{aligned}
& \sum_{i_{1}<\cdots<i_{k}} P\left(E i_{1} E i_{2} \cdots E i_{k}\right) \\
& \quad=\sum_{i_{1}<\cdots<i_{k}} \frac{(n-k)!}{n!} \\
& \quad=\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{(n-k)!}{n!}=\frac{1}{k!}
\end{aligned}
$$

$\therefore P$ (no one selects own hat)

$$
\begin{aligned}
& =1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!} \\
& =\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}
\end{aligned}
$$

33. Let $S=$ event student is sophomore; $F=$ event student is freshman; $B=$ event student is boy; $G=$ event student is girl. Let $x=$ number of sophomore girls; total number of students $=16+x$.

$$
\begin{aligned}
P(F) & =\frac{10}{16+x} P(B)=\frac{10}{16+x} P(F B)=\frac{4}{16+x} \\
\frac{4}{16+x} & =P(F B)=P(F) P(B)=\frac{10}{16+x} \\
\frac{10}{16+x} & \Rightarrow x=9
\end{aligned}
$$

34. Not a good system. The successive spins are independent and so

$$
\begin{aligned}
P\{11 \text { th is red } \mid \text { st } 10 \text { black }\} & =P\{11 \text { th is red }\} \\
& =P\left[=\frac{18}{38}\right]
\end{aligned}
$$

35. (a) $1 / 16$
(b) $1 / 16$
(c) $15 / 16$, since the only way in which the pattern H, H, H, H can appear before the pattern T, H, H, H is if the first four flips all land heads.
36. Let $B=$ event marble is black; $B_{i}=$ event that box i is chosen. Now

$$
\begin{aligned}
B & =B B_{1} \cup B B_{2} P(B)=P\left(B B_{1}\right)+P\left(B B_{2}\right) \\
& =P\left(B \mid B_{1}\right) P\left(B_{1}\right)+P\left(B \mid B_{2}\right) P\left(B_{2}\right) \\
& =\frac{1}{2} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{1}{2}=\frac{7}{12}
\end{aligned}
$$

37. Let $W=$ event marble is white.

$$
\begin{aligned}
P\left(B_{1} \mid W\right) & =\frac{P\left(W \mid B_{1}\right) P\left(B_{1}\right)}{P\left(W \mid B_{1}\right) P\left(B_{1}\right)+P\left(W \mid B_{2}\right) P\left(B_{2}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{2}}=\frac{\frac{1}{4}}{\frac{5}{12}}=\frac{3}{5}
\end{aligned}
$$

38. Let $T_{W}=$ event transfer is white; $T_{B}=$ event transfer is black; $W=$ event white ball is drawn from urn 2.

$$
\begin{aligned}
P\left(T_{W} \mid W\right) & =\frac{P\left(W \mid T_{W}\right) P\left(T_{W}\right)}{P\left(W \mid T_{W}\right) P\left(T_{W}\right)+P\left(W \mid T_{B}\right) P\left(T_{B}\right)} \\
& =\frac{\frac{2}{7} \cdot \frac{2}{3}}{\frac{2}{7} \cdot \frac{2}{3}+\frac{1}{7} \cdot \frac{1}{3}}=\frac{\frac{4}{21}}{\frac{5}{21}}=\frac{4}{5}
\end{aligned}
$$

39. Let $W=$ event woman resigns; A, B, C are events the person resigning works in store A, B, C, respectively.

$$
\begin{aligned}
P(C \mid W) & =\frac{P(W \mid C) P(C)}{P(W \mid C) P(C)+P(W \mid B) P(B)+P(W \mid A) P(A)} \\
& =\frac{.70 \times \frac{100}{225}}{.70 \times \frac{100}{225}+.60 \times \frac{75}{225}+.50 \times \frac{50}{225}} \\
& =\frac{70}{225} / \frac{140}{225}=\frac{1}{2}
\end{aligned}
$$

40. (a) $F=$ event fair coin flipped; $U=$ event two-headed coin flipped.

$$
\begin{aligned}
P(F \mid H) & =\frac{P(H \mid F) P(F)}{P(H \mid F) P(F)+P(H \mid U) P(U)} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}+1 \cdot \frac{1}{2}}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(F \mid H H) & =\frac{P(H H \mid F) P(F)}{P(H H \mid F) P(F)+P(H H \mid U) P(U)} \\
& =\frac{\frac{1}{4} \cdot \frac{1}{2}}{\frac{1}{4} \cdot \frac{1}{2}+1 \cdot \frac{1}{2}}=\frac{\frac{1}{8}}{\frac{5}{8}}=\frac{1}{5}
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(F \mid H H T) & =\frac{P(H H T \mid F) P(F)}{P(H H T \mid F) P(F)+P(H H T \mid U) P(U)} \\
& =\frac{P(H H T \mid F) P(F)}{P(H H T \mid F) P(F)+0}=1
\end{aligned}
$$

since the fair coin is the only one that can show tails.
41. Note first that since the rat has black parents and a brown sibling, we know that both its parents are hybrids with one black and one brown gene (for if either were a pure black then all their offspring would be black). Hence, both of their offspring's genes are equally likely to be either black or brown.
(a) $P(2$ black genes \mid at least one black gene $)=\frac{P(2 \text { black genes })}{P(\text { at least one black gene })}$

$$
=\frac{1 / 4}{3 / 4}=1 / 3
$$

(b) Using the result from part (a) yields the following:

$$
\begin{aligned}
P(2 \text { black genes } \mid 5 \text { black offspring }) & =\frac{P(2 \text { black genes })}{P(5 \text { black offspring })} \\
& =\frac{1 / 3}{1(1 / 3)+(1 / 2)^{5}(2 / 3)} \\
& =16 / 17
\end{aligned}
$$

where $P(5$ black offspring) was computed by conditioning on whether the rat had 2 black genes.
42. Let $B=$ event biased coin was flipped; F and U (same as above).

$$
\begin{aligned}
P(U \mid H) & =\frac{P(H \mid U) P(U)}{P(H \mid U) P(U)+P(H \mid B) P(B)+P(H \mid F) P(F)} \\
& =\frac{1 \cdot \frac{1}{3}}{1 \cdot \frac{1}{3}+\frac{3}{4} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3}}=\frac{\frac{1}{3}}{\frac{9}{12}}=\frac{4}{9}
\end{aligned}
$$

43. Let B be the event that Flo has a blue eyed gene. Using that Jo and Joe both have one blue-eyed gene yields, upon letting X be the number of blue-eyed genes possessed by a daughter of theirs, that

$$
P(B)=P(X=1 \mid X<2)=\frac{1 / 2}{3 / 4}=2 / 3
$$

Hence, with C being the event that Flo's daughter is blue eyed, we obtain

$$
P(C)=P(C B)=P(B) P(C \mid B)=1 / 3
$$

44. Let $W=$ event white ball selected.

$$
\begin{aligned}
P(T \mid W) & =\frac{P(W \mid T) P(T)}{P(W \mid T) P(T)+P(W \mid H) P(H)} \\
& =\frac{\frac{1}{5} \cdot \frac{1}{2}}{\frac{1}{5} \cdot \frac{1}{2}+\frac{5}{12} \cdot \frac{1}{2}}=\frac{12}{37}
\end{aligned}
$$

45. Let $B_{i}=$ event i th ball is black; $R_{i}=$ event i th ball is red.

$$
\begin{aligned}
P\left(B_{1} \mid R_{2}\right) & =\frac{P\left(R_{2} \mid B_{1}\right) P\left(B_{1}\right)}{P\left(R_{2} \mid B_{1}\right) P\left(B_{1}\right)+P\left(R_{2} \mid R_{1}\right) P\left(R_{1}\right)} \\
& =\frac{r}{\frac{r}{b+r+c} \cdot \frac{b}{b+r}+\frac{r+c}{b+r+c} \cdot \frac{r}{b+r}} \\
& =\frac{r b}{r b+(r+c) r} \\
& =\frac{b}{b+r+c}
\end{aligned}
$$

46. Let $X(=B$ or $=C)$ denote the jailer's answer to prisoner A. Now for instance,

$$
\begin{aligned}
& P\{A \text { to be executed } \mid X=B\} \\
& \quad=\frac{P\{A \text { to be executed, } X=B\}}{P\{X=B\}} \\
& \quad=\frac{P\{A \text { to be executed }\} P\{X=B \mid A \text { to be executed }\}}{P\{X=B\}} \\
& \quad=\frac{(1 / 3) P\{X=B \mid A \text { to be executed }\}}{1 / 2} .
\end{aligned}
$$

Now it is reasonable to suppose that if A is to be executed, then the jailer is equally likely to answer either B or C. That is,

$$
P\{X=B \mid A \text { to be executed }\}=\frac{1}{2}
$$

and so,

$$
P\{A \text { to be executed } \mid X=B\}=\frac{1}{3}
$$

Similarly,

$$
P\{A \text { to be executed } \mid X=C\}=\frac{1}{3}
$$

and thus the jailer's reasoning is invalid. (It is true that if the jailer were to answer B, then A knows that the condemned is either himself or C, but it is twice as likely to be C.)
47. 1. $0 \leq P(A \mid B) \leq 1$
2. $P(S \mid B)=\frac{P(S B)}{P(B)}=\frac{P(B)}{P(B)}=1$
3. For disjoint events A and D

$$
\begin{aligned}
P(A \cup D \mid B) & =\frac{P((A \cup D) B)}{P(B)} \\
& =\frac{P(A B \cup D B)}{P(B)} \\
& =\frac{P(A B)+P(D B)}{P(B)} \\
& =P(A \mid B)+P(D \mid B)
\end{aligned}
$$

Direct verification is as follows:

$$
\begin{aligned}
& P(A \mid B C) P(C \mid B)+P\left(A \mid B C^{c}\right) P\left(C^{c} \mid B\right) \\
&=\frac{P(A B C)}{P(B C)} \frac{P(B C)}{P(B)}+\frac{P\left(A B C^{c}\right)}{P\left(B C^{c}\right)} \frac{P\left(B C^{c}\right)}{P(B)} \\
&=\frac{P(A B C)}{P(B)}+\frac{P\left(A B C^{c}\right)}{P(B)} \\
&=\frac{P(A B)}{P(B)} \\
&=P(A \mid B)
\end{aligned}
$$

Chapter 2

1. $P\{X=0\}=\left[\begin{array}{l}7 \\ 2\end{array}\right] /\left[\begin{array}{c}10 \\ 2\end{array}\right]=\frac{14}{30}$
