
Instructor’s Manual
to Accompany

Chapter 1

1. S = {(R, R), (R, G), (R, B), (G, R), (G, G), (G, B), (B, R), (B, G), (B, B)}
The probability of each point in S is 1/9.

2. S = {(R, G), (R, B), (G, R), (G, B), (B, R), (B, G)}
3. S = {(e1, e2, . . . , en), n ≥ 2} where ei∈(heads, tails}. In addition, en = en−1 =

heads and for i = 1, . . . , n − 2 if ei = heads, then ei+1 = tails.

P{4 tosses} = P{(t, t, h, h)} + P{(h, t, h, h)}
= 2

[
1

2

]4

= 1

8

4. (a) F(E ∪ G)c = F EcGc

(b) E FGc

(c) E ∪ F ∪ G
(d) E F ∪ EG ∪ FG
(e) E FG
(f) (E ∪ F ∪ G)c = Ec FcGc

(g) (E F)c(EG)c(FG)c

(h) (E FG)c

5. 3
4 . If he wins, he only wins $1, while if he loses, he loses $3.

6. If E(F ∪ G) occurs, then E occurs and either F or G occur; therefore, either E F
or EG occurs and so

E(F ∪ G) ⊂ E F ∪ EG



Similarly, if E F ∪ EG occurs, then either E F or EG occurs. Thus, E occurs and
either F or G occurs; and so E(F ∪ G) occurs. Hence,

E F ∪ EG ⊂ E(F ∪ G)

which together with the reverse inequality proves the result.
7. If (E ∪ F)c occurs, then E ∪ F does not occur, and so E does not occur (and so Ec

does); F does not occur (and so Fc does) and thus Ec and Fc both occur. Hence,

(E ∪ F)c ⊂ Ec Fc

If Ec Fc occurs, then Ec occurs (and so E does not), and Fc occurs (and so F does
not). Hence, neither E or F occurs and thus (E ∪ F)c does. Thus,

Ec Fc ⊂ (E ∪ F)c

and the result follows.
8. 1 ≥ P(E ∪ F) = P(E)+ P(F)− P(E F)

9. F = E ∪ F Ec, implying since E and F Ec are disjoint that P(F) = P(E) +
P(F E)c.

10. Either by induction or use

n∪
1

Ei = E1 ∪ Ec
1 E2 ∪ Ec

1 Ec
2 E3 ∪ · · · ∪ Ec

1 · · · Ec
n−1 En

and as each of the terms on the right side are mutually exclusive:

P(∪
i

Ei ) = P(E1)+ P(Ec
1 E2)+ P(Ec

1 Ec
2 E3)+ · · ·

+ P(Ec
1 · · · Ec

n−1 En)

≤ P(E1)+ P(E2)+ · · · + P(En) (why?)

11. P{sum is i} =
{

i−1
36 , i = 2, . . . , 7

13−i
36 , i = 8, . . . , 12

12. Either use hint or condition on initial outcome as:

P{E before F}
= P{E before F |initial outcome is E}P(E)

+ P{E before F |initial outcome is F}P(F)

+ P{E before F |initial outcome neither E or F}[1− P(E)− P(F)]
= 1 · P(E)+ 0 · P(F)+ P{E before F}
= [1− P(E)− P(F)]

Therefore, P{E before F} = P(E)
P(E)+P(F)

13. Condition an initial toss

P{win} =
12∑

i=2

P{win|throw i}P{throw i}
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Now,

P{win|throw i} = P{i before 7}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 i = 2, 12
i − 1

5+ 1
i = 3, . . . , 6

1 i = 7, 11
13− i

19− 1
i = 8, . . . , 10

where above is obtained by using Problems 11 and 12.

P{win} ≈ .49.

14. P{A wins} =
∞∑

n=0

P{A wins on (2n + 1)st toss}

=
∞∑

n=0

(1− P)2n P

= P
∞∑

n=0

[(1− P)2]n

= P
1

1− (1− P)2

= P

2P − P2

= 1

2− P
P{B wins} = 1− P{A wins}

= 1− P

2− P

16. P(E ∪ F) = P(E ∪ F Ec)

= P(E)+ P(F Ec)

since E and F Ec are disjoint. Also,

P(E) = P(F E ∪ F Ec)

= P(F E)+ P(F Ec) by disjointness

Hence,

P(E ∪ F) = P(E)+ P(F)− P(E F)

17. Prob{end} = 1− Prob{continue}
= 1− P({H, H, H} ∪ {T, T, T })
= 1− [Prob(H, H, H)+ Prob(T, T, T )].
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Fair coin: Prob{end} = 1−
[

1

2
· 1

2
· 1

2
+ 1

2
· 1

2
· 1

2

]

= 3

4

Biased coin:P{end} = 1−
[

1

4
· 1

4
· 1

4
+ 3

4
· 3

4
· 3

4

]

= 9

16

18. Let B = event both are girls; E = event oldest is girl; L = event at least one is a girl.

(a) P(B|E) = P(B E)

P(E)
= P(B)

P(E)
= 1/4

1/2
= 1

2

(b) P(L) = 1− P(no girls) = 1− 1

4
= 3

4
,

P(B|L) = P(BL)

P(L)
= P(B)

P(L)
= 1/4

3/4
= 1

3

19. E = event at least 1 six P(E)

= number of ways to get E

number of samples pts
= 11

36
D = event two faces are different P(D)

= 1− Prob(two faces the same)

= 1− 6

36
= 5

6
P(E |D) = P(E D)

P(D)
= 10/36

5/6
= 1

3

20. Let E = event same number on exactly two of the dice; S = event all three numbers
are the same; D = event all three numbers are different. These three events are
mutually exclusive and define the whole sample space. Thus, 1 = P(D)+ P(S)+
P(E), P(S) = 6/216 = 1/36; for D have six possible values for first die, five for
second, and four for third.

∴ Number of ways to get D = 6 · 5 · 4 = 120.

P(D) = 120/216 = 20/36

∴ P(E) = 1− P(D)− P(S)

= 1− 20

36
− 1

36
= 5

12

21. Let C = event person is color blind.

P(Male|C) = P(C |Male)P(Male)

P(C |MaleP(Male)+ P(C |Female)P(Female)

= .05× .5

.05× .5+ .0025× .5

= 2500

2625
= 20

21
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22. Let trial 1 consist of the first two points; trial 2 the next two points, and so on. The
probability that each player wins one point in a trial is 2p(1 − p). Now a total of
2n points are played if the first (a − 1) trials all result in each player winning one
of the points in that trial and the nth trial results in one of the players winning both
points. By independence, we obtain

P{2n points are needed}
= (2p(1− p))n−1(p2 + (1− p)2), n ≥ 1

The probability that A wins on trial n is (2p(1− p))n−1 p2 and so

P{A wins} = p2
∞∑

n=1

(2p(1− p))n−1

= p2

1− 2p(1− p)

23. P(E1)P(E2|E1)P(E3|E1 E2) . . . P(En|E1 . . . En−1)

= P(E1)
P(E1 E2)

P(E1)

P(E1 E2 E3)

P(E1 E2)
. . .

P(E1 . . . En)

P(E1 . . . En−1)

= P(E1 . . . En)

24. Let a signify a vote for A and b one for B.

(a) P2,1 = P{a, a, b} = 1/3
(b) P3,1 = P{a, a} = (3/4)(2/3) = 1/2
(c) P3,2 = P{a, a, a} + P{a, a, b, a}

= (3/5)(2/4)[1/3+ (2/3)(1/2)] = 1/5

(d) P4,1 = P{a, a} = (4/5)(3/4) = 3/5
(e) P4,2 = P{a, a, a} + P{a, a, b, a}

= (4/6)(3/5)[2/4+ (2/4)(2/3)] = 1/3

(f) P4,3 = P{always ahead|a, a}(4/7)(3/6)

= (2/7)[1− P{a, a, a, b, b, b|a, a}
− P{a, a, b, b|a, a} − P{a, a, b, a, b, b|a, a}]

= (2/7)[1− (2/5)(3/4)(2/3)(1/2)

− (3/5)(2/4)− (3/5)(2/4)(2/3)(1/2)]
= 1/7

(g) P5,1 = P{a, a} = (5/6)(4/5) = 2/3
(h) P5,2 = P{a, a, a} + P{a, a, b, a}

= (5/7)(4/6)[(3/5)+ (2/5)(3/4)] = 3/7

By the same reasoning we have

Instructor’s Manual to Accompany 5



(i) P5,3 = 1/4
(j) P5,4 = 1/9
(k) In all the cases above, Pn,m = n−n

n+n

25. (a) P{pair} = P{second card is same denomination as first}
= 3/51

(b) P{pair|different suits}
= P{pair, different suits}

P{different suits}
= P{pair}/P{different suits}
= 3/51

39/51
= 1/13

26. P(E1) =
(

4
1

)(
48
12

)/(
52
13

)
= 39.38.37

51.50.49

P(E2|E1) =
(

3
1

) (
36
12

)/(
39
13

)
= 26.25

38.37

P(E3|E1 E2) =
(

2
1

) (
24
12

)/(
26
13

)
= 13/25

P(E4|E1 E2 E3) = 1

P(E1 E2 E3 E4) = 39.26.13

51.50.49

27. P(E1) = 1
P(E2|E1) = 39/51, since 12 cards are in the ace of spades pile and 39 are not.
P(E3|E1 E2) = 26/50, since 24 cards are in the piles of the two aces and 26 are in
the other two piles.

P(E4|E1 E2 E3) = 13/49

So

P{each pile has an ace} = (39/51)(26/50)(13/49)

28. Yes. P(A|B) > P(A) is equivalent to P(AB) > P(A)P(B), which is equivalent
to P(B|A) > P(B).

29. (a) P(E |F) = 0
(b) P(E |F) = P(E F)/P(F) = P(E)/P(F) ≥ P(E) = .6
(c) P(E |F) = P(E F)/P(F) = P(F)/P(F) = 1

30. (a) P{George|exactly 1 hit} = P{George, not Bill}
P{exactly 1}

= P{G, not B}
P{G, not B} + P{B, not G)}

= (.4)(.3)

(.4)(.3)+ (.7)(.6)

= 2/9
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(b) P{G|hit} = P{G, hit}/P{hit}
= P{G}/P{hit} = .4/[1− (.3)(.6)]
= 20/41

31. Let S = event sum of dice is 7; F = event first die is 6.

P(S) = 1

6
P(F S) = 1

36
P(F |S) = P(F |S)

P(S)

= 1/36

1/6
= 1

6

32. Let Ei = event person i selects own hat. P (no one selects own hat)

= 1− P(E1 ∪ E2 ∪ · · · ∪ En)

= 1−
[∑

i1

P(Ei1)−
∑
i1<i2

P(Ei1 Ei2)+ · · ·

+ (−1)n+1 P(E1 E2 En)
]

= 1−
∑

i1

P(Ei1)−
∑
i1<i2

P(Ei1 Ei2)

−
∑

i1<i2<i3

P(Ei1 Ei2 Ei3)+ · · ·

+ (−1)n P(E1 E2 En)

Let k ∈ {1, 2, . . . , n}. P(Ei1 E I2 Eik) = number of ways k specific men can select
own hats ÷ total number of ways hats can be arranged = (n − k)!/n!. Number of
terms in summation

∑
i1<i2<···<ik

= number of ways to choose k variables out of n

variables =
[

n
k

]
= n!/k!(n − k)!.

Thus, ∑
i1<···<ik

P(Ei1 Ei2 · · · Eik)

=
∑

i1<···<ik

(n − k)!
n!

=
[

n
k

]
(n − k)!

n! = 1

k!
∴ P(no one selects own hat)

= 1− 1

1! +
1

2! −
1

3! + · · · + (−1)n 1

n!
= 1

2! −
1

3! + · · · + (−1)n 1

n!
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35. (a) 1/16
(b) 1/16
(c) 15/16, since the only way in which the pattern H, H, H, H can appear before

the pattern T, H, H, H is if the first four flips all land heads.

36. Let B = event marble is black; Bi = event that box i is chosen. Now

B = B B1 ∪ B B2 P(B) = P(B B1)+ P(B B2)

= P(B|B1)P(B1)+ P(B|B2)P(B2)

= 1

2
· 1

2
+ 2

3
· 1

2
= 7

12

37. Let W = event marble is white.

P(B1|W ) = P(W |B1)P(B1)

P(W |B1)P(B1)+ P(W |B2)P(B2)

=
1
2 · 1

2
1
2 · 1

2 + 1
3 · 1

2

=
1
4
5

12

= 3

5

38. Let TW = event transfer is white; TB = event transfer is black; W = event white ball
is drawn from urn 2.

P(TW |W ) = P(W |TW )P(TW )

P(W |TW )P(TW )+ P(W |TB)P(TB)

=
2
7 · 2

3
2
7 · 2

3 + 1
7 · 1

3

=
4
21
5
21

= 4

5

33. Note that each set played is independently golden with probability 2(1/2)24 =
(1/2)23. Condition on whether the match has 2 or 3 sets. Using that there will be a
total of 2 sets with probability 1/2 yields the solution: (1− (1− (1/2)23)2)(1/2)+
(1 − (1 − (1/2)23)3)(1/2).
It should be noted that the preceding uses that whether a set is golden is indepen-
dent of who won the set. That is, the conditional probability that a set is golden
given that it is won by player 1 is (1/2)23. To see why, it is obvious that who
wins is independent of the event that the set was golden (since the winner given
that it was golden is still equally likely to be either 1 or 2). But independence is
symmetric, thus the event that a set is golden is independent of who won the set.

34. Letting A and B be respectively the events that the computer is fixed by A and that
it is fixed by B. As A and B are mutually exclusive

P(A ∪ B) = .4 + .6(.2) = .52
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39. Let W = event woman resigns; A, B, C are events the person resigning works in
store A, B, C , respectively.

P(C |W ) = P(W |C)P(C)

P(W |C)P(C)+ P(W |B)P(B)+ P(W |A)P(A)

= .70× 100
225

.70× 100
225 + .60× 75

225 + .50× 50
225

= 70

225

/
140

225
= 1

2

40. (a) F = event fair coin flipped; U = event two-headed coin flipped.

P(F |H) = P(H |F)P(F)

P(H |F)P(F)+ P(H |U )P(U )

=
1
2 · 1

2
1
2 · 1

2 + 1 · 1
2

=
1
4
3
4

= 1

3

(b)
P(F |H H) = P(H H |F)P(F)

P(H H |F)P(F)+ P(H H |U )P(U )

=
1
4 · 1

2
1
4 · 1

2 + 1 · 1
2

=
1
8
5
8

= 1

5

(c)
P(F |H H T ) = P(H H T |F)P(F)

P(H H T |F)P(F)+ P(H H T |U )P(U )

= P(H H T |F)P(F)

P(H H T |F)P(F)+ 0
= 1

since the fair coin is the only one that can show tails.

41. Note first that since the rat has black parents and a brown sibling, we know that
both its parents are hybrids with one black and one brown gene (for if either were a
pure black then all their offspring would be black). Hence, both of their offspring’s
genes are equally likely to be either black or brown.

(a) P(2 black genes|at least one black gene) = P(2 black genes)

P(at least one black gene)

= 1/4

3/4
= 1/3

(b) Using the result from part (a) yields the following:

P(2 black genes|5 black offspring) = P(2 black genes)

P(5 black offspring)

= 1/3

1(1/3)+ (1/2)5(2/3)

= 16/17
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where P(5 black offspring) was computed by conditioning on whether the rat
had 2 black genes.

42. Let B = event biased coin was flipped; F and U (same as above).

P(U |H) = P(H |U )P(U )

P(H |U )P(U )+ P(H |B)P(B)+ P(H |F)P(F)

= 1 · 1
3

1 · 1
3 + 3

4 · 1
3 + 1

2 · 1
3

=
1
3
9

12

= 4

9

43. Let B be the event that Flo has a blue eyed gene. Using that Jo and Joe both have one
blue-eyed gene yields, upon letting X be the number of blue-eyed genes possessed
by a daughter of theirs, that

P(B) = P(X = 1|X < 2) = 1/2

3/4
= 2/3

Hence, with C being the event that Flo’s daughter is blue eyed, we obtain

P(C) = P(C B) = P(B)P(C |B) = 1/3

44. Let W = event white ball selected.

P(T |W ) = P(W |T )P(T )

P(W |T )P(T )+ P(W |H)P(H)

=
1
5 · 1

2
1
5 · 1

2 + 5
12 · 1

2

= 12

37

45. Let Bi = event i th ball is black; Ri = event i th ball is red.

P(B1|R2) = P(R2|B1)P(B1)

P(R2|B1)P(B1)+ P(R2|R1)P(R1)

=
r

b+ r + c · b
b+ r

r
b+ r + c · b

b+ r + r + c
b+ r + c · r

b+ r

= rb

rb + (r + c)r

= b

b + r + c

46. Let X(=B or =C) denote the jailer’s answer to prisoner A. Now for instance,

P{A to be executed|X = B}
= P{A to be executed, X = B}

P{X = B}
= P{A to be executed}P{X = B|A to be executed}

P{X = B}
= (1/3)P{X = B|A to be executed}

1/2
.
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Now it is reasonable to suppose that if A is to be executed, then the jailer is equally
likely to answer either B or C. That is,

P{X = B|A to be executed} = 1

2

and so,

P{A to be executed|X = B} = 1

3

Similarly,

P{A to be executed|X = C} = 1

3

and thus the jailer’s reasoning is invalid. (It is true that if the jailer were to answer
B, then A knows that the condemned is either himself or C, but it is twice as likely
to be C.)

47. 1. 0 ≤ P(A|B) ≤ 1

2. P(S|B) = P(SB)

P(B)
= P(B)

P(B)
= 1

3. For disjoint events A and D

P(A ∪ D|B) = P((A ∪ D)B)

P(B)

= P(AB ∪ DB)

P(B)

= P(AB)+ P(DB)

P(B)

= P(A|B)+ P(D|B)

Direct verification is as follows:

P(A|BC)P(C |B)+ P(A|BCc)P(Cc|B)

= P(ABC)

P(BC)

P(BC)

P(B)
+ P(ABCc)

P(BCc)

P(BCc)

P(B)

= P(ABC)

P(B)
+ P(ABCc)

P(B)

= P(AB)

P(B)

= P(A|B)

49. Apply Proposition 1.1 to the increasing events Ac
n,n ≥ 1.

50. (a) It is always the case that

liminf An ⊂ limsup An ⊂ ∪nAn
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