
This file contains the exercises, hints, and solutions for Chapter 1 of the

book ”Introduction to the Design and Analysis of Algorithms,” 3rd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by B; those that might be difficult for a majority of students are
marked by I 

Exercises 1.1

1. Do some research on al-Khorezmi (also al-Khwarizmi), the man from

whose name the word “algorithm” is derived. In particular, you should

learn what the origins of the words “algorithm” and “algebra” have in

common.

2. Given that the official purpose of the U.S. patent system is the promo-

tion of the “useful arts,” do you think algorithms are patentable in this

country? Should they be?

3. a. Write down driving directions for going from your school to your home

with the precision required from an algorithm’s description.

b. Write down a recipe for cooking your favorite dish with the precision

required by an algorithm.

4. Design an algorithm for computing b√c for any positive integer . Be-
sides assignment and comparison, your algorithm may only use the four

basic arithmetical operations.

5. Design an algorithm to find all the common elements in two sorted lists

of numbers. For example, for the lists 2, 5, 5, 5 and 2, 2, 3, 5, 5, 7, the

output should be 2, 5, 5. What is the maximum number of comparisons

your algorithm makes if the lengths of the two given lists are  and 

respectively?

6. a. Find gcd(31415, 14142) by applying Euclid’s algorithm.

b. Estimate how many times faster it will be to find gcd(31415, 14142)

by Euclid’s algorithm compared with the algorithm based on checking

consecutive integers from min{} down to gcd()

7. B Prove the equality gcd()= gcd(mod) for every pair of positive

integers  and .

8. What does Euclid’s algorithm do for a pair of integers in which the first

is smaller than the second? What is the maximum number of times this

can happen during the algorithm’s execution on such an input?

9. a. What is the minimum number of divisions made by Euclid’s algorithm

among all inputs 1 ≤  ≤ 10?

1



b. What is the maximum number of divisions made by Euclid’s algorithm

among all inputs 1 ≤  ≤ 10?
10. a. Euclid’s algorithm, as presented in Euclid’s treatise, uses subtractions

rather than integer divisions. Write pseudocode for this version of Euclid’s

algorithm.

b. I Euclid’s game (see [Bog]) starts with two unequal positive in-

tegers on the board. Two players move in turn. On each move, a player

has to write on the board a positive number equal to the difference of two

numbers already on the board; this number must be new, i.e., different

from all the numbers already on the board. The player who cannot move

loses the game. Should you choose to move first or second in this game?

11. The extended Euclid’s algorithm determines not only the greatest

common divisor  of two positive integers  and  but also integers (not

necessarily positive)  and , such that +  = 

a. Look up a description of the extended Euclid’s algorithm (see, e.g.,

[KnuI, p. 13]) and implement it in the language of your choice.

b. Modify your program to find integer solutions to the Diophantine

equation +  =  with any set of integer coefficients , , and .

12. B Locker doors There are  lockers in a hallway, numbered sequentially

from 1 to . Initially, all the locker doors are closed. You make  passes

by the lockers, each time starting with locker #1. On the th pass,  =

1 2  , you toggle the door of every th locker: if the door is closed, you

open it; if it is open, you close it. After the last pass, which locker doors

are open and which are closed? How many of them are open?

2



Hints to Exercises 1.1

1. It is probably faster to do this by searching the Web, but your library

should be able to help, too.

2. One can find arguments supporting either view. There is a well established

principle pertinent to the matter, though: scientific facts or mathematical

expressions of them are not patentable. (Why do you think it is the case?)

But should this preclude granting patents for all algorithms?

3. You may assume that you are writing your algorithms for a human rather

than a machine. Still, make sure that your descriptions do not contain

obvious ambiguities. Knuth provides an interesting comparison between

cooking recipes and algorithms [KnuI, p.6].

4. There is a quite straightforward algorithm for this problem based on the

definition of b√c.
5. Try to design an algorithm that always makes less than  comparisons.

6. a. Just follow Euclid’s algorithm as described in the text.

b. Compare the number of divisions made by the two algorithms.

7. Prove that if  divides both  and  (i.e.,  =  and  =  for some

positive integers  and ), then it also divides both  and  = mod

and vice versa Use the formula  = +  (0 ≤   ) and the fact that

if  divides two integers  and  it also divides +  and −  (Why?)

8. Perform one iteration of the algorithm for two arbitrarily chosen integers

  

9. The answer to part (a) can be given immediately; the answer to part

(b) can be given by checking the algorithm’s performance on all pairs

1     ≤ 10
10. a. Use the equality

gcd() = gcd(−  ) for  ≥   0

b. The key is to figure out the total number of distinct integers that can be

written on the board, starting with an initial pair  where    ≥ 1
You should exploit a connection of this question to the question of part

(a). Considering small examples, especially those with  = 1 and  = 2

should help, too.

11. Of course, for some coefficients, the equation will have no solutions.

12. Tracing the algorithm by hand for, say,  = 10 and studying its outcome

should help answering both questions.

3



Solutions to Exercises 1.1

1. Al-Khwarizmi (9th century C.E.) was a great Arabic scholar, most famous
for his algebra textbook. In fact, the word “algebra” is derived from the

Arabic title of this book while the word “algorithm” is derived from a

translation of Al-Khwarizmi’s last name (see, e.g., [KnuI, pp. 1-2], [Knu96,

pp. 88-92, 114]).

2. This legal issue has yet to be settled. The current legal state of affairs

distinguishes mathematical algorithms, which are not patentable, from

other algorithms, which may be patentable if implemented as computer

programs (e.g., [Cha00]).

3. n/a

4. A straightforward algorithm that does not rely on the availability of an

approximate value of
√
 can check the squares of consecutive positive

integers until the first square exceeding  is encountered. The answer will

be the number’s immediate predecessor. Note: A much faster algorithm

for solving this problem can be obtained by using Newton’s method (see

Sections 11.4 and 12.4).

5. Initialize the list of common elements to empty. Starting with the first ele-

ments of the lists given, repeat the following until one of the lists becomes

empty. Compare the current elements of the two lists: if they are equal,

add this element to the list of common elements and move to the next

elements of both lists (if any); otherwise, move to the element following

the smaller of the two involved in the comparison.

The maximum number of comparisons, which is made by this algorithm

on some lists with no common elements such as the first  positive odd

numbers and the first  positive even numbers, is equal to + − 1
6. a. gcd(31415 14142) = gcd(14142 3131) = gcd(3131 1618) =

gcd(1618 1513) = gcd(1513 105) = gcd(1513 105) = gcd(105 43) =

gcd(43 19) = gcd(19 5) = gcd(5 4) = gcd(4 1) = gcd(1 0) = 1

b. To answer the question, we need to compare the number of divisions

the algorithms make on the input given. The number of divisions made

by Euclid’s algorithm is 11 (see part a). The number of divisions made

by the consecutive integer checking algorithm on each of its 14142 itera-

tions is either 1 and 2; hence the total number of multiplications is be-

tween 1·14142 and 2·14142. Therefore, Euclid’s algorithm will be between
1·1414211 ≈ 1300 and 2·1414211 ≈ 2600 times faster.

4



7. Let us first prove that if  divides two integers  and  it also divides

both +  and − . By definition of division, there exist integers  and

 such that  =  and  =  Therefore

±  = ±  = (± )

i.e.,  divides both +  and − 

Also note that if  divides  it also divides any integer multiple  of

 Indeed, since  divides   =  Hence

 = () = ()

i.e.,  divides 

Now we can prove the assertion in question. For any pair of positive

integers  and  if  divides both  and , it also divides both  and

 = mod = −  Similarly, if  divides both  and  = mod =

 −  it also divides both  =  +  and  Thus, the two pairs

() and ( ) have the same finite nonempty set of common divisors,

including the largest element in the set, i.e., gcd() = gcd( )

8. For any input pair  such that 0 ≤    Euclid’s algorithm simply

swaps the numbers on the first iteration:

gcd() = gcd()

because mod =  if    Such a swap can happen only once since

gcd() = gcd(mod) implies that the first number of the new pair

() will be greater than its second number (mod) after every iteration

of the algorithm.

9. a. For any input pair  ≥  ≥ 1 in which  is a multiple of  Euclid’s

algorithm makes exactly one division; it is the smallest number possible

for two positive numbers.

b. The answer is 5 divisions, which is made by Euclid’s algorithm in

computing gcd(5 8) It is not too time consuming to get this answer by

examining the number of divisions made by the algorithm on all input

pairs 1     ≤ 10
Note: A pertinent general result (see [KnuII, p. 360]) is that for any

input pair  where 0 ≤    the number of divisions required by

Euclid’s algorithm to compute gcd() is at most blog(3−))c where
 = (1 +

√
5)2.

5



10. a. Here is a nonrecursive version:

Algorithm Euclid2 ()

//Computes gcd() by Euclid’s algorithm based on subtractions

//Input: Two nonnegative integers  and  not both equal to 0

//Output: The greatest common divisor of  and 

while  6= 0 do
if    swap()

← − 

return 

b. It is not too difficult to prove that the integers that can be written on

the board are the integers generated by the subtraction version of Euclid’s

algorithm and only them. Although the order in which they appear on

the board may vary, their total number always stays the same: It is equal

to  gcd() where  is the maximum of the initial numbers which

includes two integers of the initial pair. Hence, the total number of

possible moves is  gcd()−2 Consequently, if  gcd() is odd,

one should choose to go first; if it is even, one should choose to go second.

11. n/a

12. Since all the doors are initially closed, a door will be open after the last

pass if and only if it is toggled an odd number of times. Door  (1 ≤  ≤ )

is toggled on pass  (1 ≤  ≤ ) if and only if  divides  Hence, the total

number of times door  is toggled is equal to the number of its divisors.

Note that if  divides  i.e.  =  then  divides  too. Hence all the

divisors of  can be paired (e.g., for  = 12 such pairs are 1 and 12, 2

and 6, 3 and 4) unless  is a perfect square (e.g., for  = 16 4 does not

have another divisor to be matched with). This implies that  has an

odd number of divisors if and only if it is a perfect square, i.e.,  = 2

Hence doors that are in the positions that are perfect squares and only

such doors will be open after the last pass. The total number of such

positions not exceeding  is equal to b√c: these numbers are the squares
of the positive integers between 1 and b√c inclusively.

6



Exercises 1.2

1. Old World puzzle A peasant finds himself on a riverbank with a wolf,

a goat, and a head of cabbage. He needs to transport all three to the

other side of the river in his boat. However, the boat has room for only

the peasant himself and one other item (either the wolf, the goat, or the

cabbage). In his absence, the wolf would eat the goat, and the goat would

eat the cabbage. Solve this problem for the peasant or prove it has no

solution. (Note: The peasant is a vegetarian but does not like cabbage

and hence can eat neither the goat nor the cabbage to help him solve the

problem. And it goes without saying that the wolf is a protected species.)

2. New World puzzle There are four people who want to cross a rickety

bridge; they all begin on the same side. You have 17 minutes to get them

all across to the other side. It is night, and they have one flashlight. A

maximum of two people can cross the bridge at one time. Any party that

crosses, either one or two people, must have the flashlight with them. The

flashlight must be walked back and forth; it cannot be thrown, for example.

Person 1 takes 1 minute to cross the bridge, person 2 takes 2 minutes,

person 3 takes 5 minutes, and person 4 takes 10 minutes. A pair must

walk together at the rate of the slower person’s pace. (Note: According to

a rumor on the Internet, interviewers at a well-known software company

located near Seattle have given this problem to interviewees.)

3. Which of the following formulas can be considered an algorithm for com-

puting the area of a triangle whose side lengths are given positive numbers

, , and ?

a.  =
p
(− )(− )(− ) where  = (+ + )2

b.  = 1
2
 sin where  is the angle between sides  and 

c.  = 1
2
 where  is the height to base 

4. Write pseudocode for an algorithm for finding real roots of equation 2+

+  = 0 for arbitrary real coefficients   and  (You may assume the

availability of the square root function ())

5. Describe the standard algorithm for finding the binary representation of

a positive decimal integer

a. in English.

b. in pseudocode.

6. Describe the algorithm used by your favorite ATM machine in dispensing

cash. (You may give your description in either English or pseudocode,

whichever you find more convenient.)

7



7. a. Can the problem of computing the number  be solved exactly?

b. How many instances does this problem have?

c. Look up an algorithm for this problem on the Internet.

8. Give an example of a problem other than computing the greatest common

divisor for which you know more than one algorithm. Which of them is

simpler? Which is more efficient?

9. Consider the following algorithm for finding the distance between the two

closest elements in an array of numbers.

Algorithm MinDistance([0− 1])
//Input: Array [0..− 1] of numbers
//Output: Minimum distance between two of its elements

 ←∞
for ← 0 to − 1 do

for  ← 0 to − 1 do
if  6=  and |[]−[]|  

 ← |[]−[]|
return 

Make as many improvements as you can in this algorithmic solution to the

problem. If you need to, you may change the algorithm altogether; if not,

improve the implementation given.

10. One of the most influential books on problem solving, titled How To Solve

It [Pol57], was written by the Hungarian-American mathematician George

Pólya (1887—1985). Pólya summarized his ideas in a four-point summary.

Find this summary on the Internet or, better yet, in his book, and compare

it with the plan outlined in Section 1.2. What do they have in common?

How are they different?

8



Hints to Exercises 1.2

1. The peasant would have to make several trips across the river, starting

with the only one possible.

2. Unlike the Old World puzzle of Problem 1, the first move solving this

puzzle is not obvious.

3. The principal issue here is a possible ambiguity.

4. Your algorithm should work correctly for all possible values of the coeffi-

cients, including zeros.

5. You almost certainly learned this algorithm in one of your introductory

programming courses. If this assumption is not true, you have a choice

between designing such an algorithm on your own or looking it up.

6. You may need to make a field trip to refresh your memory.

7. Question (a) is difficult, though the answer to it–discovered in 1760s

by the German mathematician Johann Lambert –is well-known. By

comparison, question (b) is incomparably simpler.

8. You probably know two or more different algorithms for sorting an array

of numbers.

9. You can: decrease the number of times the inner loop is executed, make

that loop run faster (at least for some inputs), or, more significantly, design

a faster algorithm from scratch.

10. n/a

9



Solutions to Exercises 1.2

1. Let P, w, g, and c stand for the peasant, wolf, goat, and cabbage head,

respectively. The following is one of the two principal sequences that

solve the problem:

Pwgc

P g

w c

g

Pw c

Pwg

c

w

P gc

Pw c

g

w c

P g

Pwgc

Note: This problem is revisited later in the book (see Section 6.6).

2. Let 1, 2, 5, 10 be labels representing the men of the problem,  represent

the flashlight’s location, and the number in the parenthesis be the total

amount of time elapsed. The following sequence of moves solves the

problem:

(0)

1,2,5,10

1,2

(2)

5,10

2

(3)

1,5,10

2,5,10

(13)

1

5,10

(15)

1,2

1,2,5,10

(17)

3. a. The formula can be considered an algorithm if we assume that we know

how to compute the square root of an arbitrary positive number.

b. The difficulty here lies in computing sin Since the formula says

nothing about how it has to be computed, it should not be considered an

algorithm. This is true even if we assume, as we did for the square root

function, that we know how to compute the sine of a given angle. (There

are several algorithms for doing this but only approximately, of course.)

The problem is that the formula says nothing about how to compute angle

 either.

c. The formula says nothing about how to compute .

4. Algorithm Quadratic(  )

//The algorithm finds real roots of equation 2 + +  = 0

//Input: Real coefficients   

//Output: The real roots of the equation or a message about their absence

if  6= 0
 ←  ∗ − 4 ∗  ∗ 
if   0

← 2 ∗ 
1← (−+ ())

2← (−− ())

10



return 1 2

else if  = 0 return −(2 ∗ )
else return ‘no real roots’

else // = 0

if  6= 0 return −
else // =  = 0

if  = 0 return ‘all real numbers’

else return ‘no real roots’

Note: See a more realistic algorithm for this problem in Section 11.4.

5. a. Divide the given number  by 2: the remainder  (0 or 1) will be

the next (from right to left) digit of the binary representation in question.

Replace  by the quotient of the last division and repeat this operation

until  becomes 0.

b. Algorithm Binary()

//The algorithm implements the standard method for finding

//the binary expansion of a positive decimal integer

//Input: A positive decimal integer 

//Output: The list  −11 0 of ’s binary digits
← 0

while  6= 0
 ← mod2

← b2c
 ←  + 1

6. n/a

7. a. , as an irrational number, can be computed only approximately.

b. It is natural to consider, as an instance of this problem, computing

’s value with a given level of accuracy, say, with  correct decimal digits.

With this interpretation, the problem has infinitely many instances.

8. n/a

9. The following improved version considers the same pair of elements only

once and avoids recomputing the same expression in the innermost loop:

Algorithm MinDistance2 ([0− 1])
//Input: An array [0..− 1] of numbers
//Output: The minimum distance  between two of its elements

11



 ←∞
for ← 0 to − 2 do

for  ← + 1 to − 1 do
← |[]−[]|
if   

 ← 

return 

A faster algorithm is based on the idea of presorting (see Section 6.1).

10. Pólya’s general four-point approach is:

1. Understand the problem

2. Devise a plan

3. Implement the plan

4. Look back/check

12



Exercises 1.3

1. Consider the algorithm for the sorting problem that sorts an array by

counting, for each of its elements, the number of smaller elements and

then uses this information to put the element in its appropriate position

in the sorted array:

Algorithm ComparisonCountingSort([0− 1], [0− 1])
//Sorts an array by comparison counting

//Input: Array [0− 1] of orderable values
//Output: Array [0− 1] of ’s elements sorted in nondecreasing order
for ← 0 to − 1 do

[]← 0

for ← 0 to − 2 do
for  ← + 1 to − 1 do

if []  []

[]← [] + 1

else []← [] + 1

for ← 0 to − 1 do
[[]]← []

a. Apply this algorithm to sorting the list 60, 35, 81, 98, 14, 47.

b. Is this algorithm stable?

c. Is it in place?

2. Name the algorithms for the searching problem that you already know.

Give a good succinct description of each algorithm in English. (If you

know no such algorithms, use this opportunity to design one.)

3. Design a simple algorithm for the string-matching problem.

4. Königsberg bridges The Königsberg bridge puzzle is universally accepted

as the problem that gave birth to graph theory. It was solved by the great

Swiss-born mathematician Leonhard Euler (1707—1783). The problem

asked whether one could, in a single stroll, cross all seven bridges of the

city of Königsberg exactly once and return to a starting point. Following

is a sketch of the river with its two islands and seven bridges:

13



a. State the problem as a graph problem.

b. Does this problem have a solution? If you believe it does, draw such

a stroll; if you believe it does not, explain why and indicate the small-

est number of new bridges that would be required to make such a stroll

possible.

5. Icosian Game A century after Euler’s discovery (see Problem 4), an-

other famous puzzle–this one invented by the renown Irish mathemati-

cian Sir William Hamilton (1805-1865)–was presented to the world under

the name of the Icosian Game. The game was played on a circular wooden

board on which the following graph was carved:

Find a Hamiltonian circuit–a path that visits all the graph’s vertices

exactly once before returning to the starting vertex–for this graph.

6. Consider the following problem: Design an algorithm to determine the

best route for a subway passenger to take from one designated station to

another in a well-developed subway system similar to those in such cities

as Washington, D.C., and London, UK.

a. The problem’s statement is somewhat vague, which is typical of real-

life problems. In particular, what reasonable criterion can be used for

defining the “best” route?

b. How would you model this problem by a graph?

7. a. Rephrase the traveling salesman problem in combinatorial object terms.

b. Rephrase the graph-coloring problem in combinatorial object terms.

14



8. Consider the following map:

a

b

c
d

e
f

a. Explain how we can use the graph-coloring problem to color the map

so that no two neighboring regions are colored the same.

b. Use your answer to part (a) to color the map with the smallest number

of colors.

9. Design an algorithm for the following problem: Given a set of  points

in the Cartesian plane, determine whether all of them lie on the same

circumference.

10. Write a program that reads as its inputs the ( ) coordinates of the

endpoints of two line segments 11 and 22 and determines whether

the segments have a common point.

15



Hints to Exercises 1.3

1. Trace the algorithm on the input given. Use the definitions of stability

and being in-place that were introduced in the section.

2. If you do not recall any searching algorithms, you should design a simple

searching algorithm (without succumbing to the temptation to find one in

the latter chapters of the book).

3. This algorithm is introduced later in the book, but you should have no

trouble to design it on your own.

4. If you have not encountered this problem in your previous courses, you

may look up the answers on the Web or in a discrete structures textbook.

The answers are, in fact, surprisingly simple.

5. No efficient algorithm for solving this problem for an arbitrary graph is

known. This particular graph does have Hamiltonian circuits that are

not difficult to find. (You need to find just one of them.)

6. a. Put yourself (mentally) in a passenger’s place and ask yourself what

criterion for the “best” route you would use. Then think of people that

may have different needs.

b. The representation of the problem by a graph is straightforward. Give

some thoughts, though, to stations where trains can be changed.

7. a. What are tours in the traveling salesman problem?

b. It would be natural to consider vertices colored the same color as

elements of the same subset.

8. Create a graph whose vertices represent the map’s regions. You will have

to decide on the edges on your own.

9. Assume that the circumference in question exists and find its center first.

Also, do not forget to give a special answer for  ≤ 2
10. Be careful not to miss some special cases of the problem.

16



Solutions to Exercises 1.3

1. a. Sorting 60, 35, 81, 98, 14, 47 by comparison counting will work as

follows:

Array [05] 60 35 81 98 14 47

Initially [] 0 0 0 0 0 0

After pass  = 0 [] 3 0 1 1 0 0

After pass  = 1 [] 1 2 2 0 1

After pass  = 2 [] 4 3 0 1

After pass  = 3 [] 5 0 1

After pass  = 4 [] 0 2

Final state [] 3 1 4 5 0 2

Array [05] 14 35 47 60 81 98

b. The algorithm is not stable. Consider, as a counterexample, the

result of its application to 10, 100

c. The algorithm is not in place because it uses two extra arrays of size

:  and 

2. Answers may vary but most students should be familiar with sequential

search, binary search, binary tree search and, possibly, hashing from their

introductory programming courses.

3. Align the pattern with the beginning of the text. Compare the corre-

sponding characters of the pattern and the text left-to right until either

all the pattern characters are matched (then stop–the search is success-

ful) or the algorithm runs out of the text’s characters (then stop–the

search is unsuccessful) or a mismatching pair of characters is encountered.

In the latter case, shift the pattern one position to the right and resume

the comparisons.

4. a. If we represent each of the river’s banks and each of the two islands by

17



vertices and the bridges by edges, we will get the following graph:

b

a

c

d

b

a

c

d

(This is, in fact, a multigraph, not a graph, because it has more than

one edge between the same pair of vertices. But this doesn’t matter for

the issue at hand.) The question is whether there exists a path (i.e.,

a sequence of adjacent vertices) in this multigraph that traverses all the

edges exactly once and returns to a starting vertex. Such paths are called

Eulerian circuits; if a path traverses all the edges exactly once but does

not return to its starting vertex, it is called an Eulerian path.

b. Euler proved that an Eulerian circuit exists in a connected (multi)graph

if and only if all its vertices have even degrees, where the degree of a ver-

tex is defined as the number of edges for which it is an endpoint. Also,

an Eulerian path exists in a connected (multi)graph if and only if it has

exactly two vertices of odd degrees; such a path must start at one of those

two vertices and end at the other. Hence, for the multigraph of the puz-

zle, there exists neither an Eulerian circuit nor an Eulerian path because

all its four vertices have odd degrees.

If we are to be satisfied with an Eulerian path, two of the multigraph’s

vertices must be made even. This can be accomplished by adding one new

bridge connecting the same places as the existing bridges. For example,

a new bridge between the two islands would make possible, among others,

18



the walk − − − − − − − − 

b

a

c

d

b

a

c

d

If we want a walk that returns to its starting point, all the vertices in

the corresponding multigraph must be even. Since a new bridge/edge

changes the parity of two vertices, at least two new bridges/edges will be

needed. For example, here is one such “enhancement”:

b

a

c

d

b

a

c

d

This would make possible  −  −  −  −  −  −  −  −  − , among

several other such walks.

19



5. A Hamiltonian circuit is marked on the graph below:

6. a. At least three “reasonable”criteria come to mind: the fastest trip, a

trip with the smallest number of train stops, and a trip that requires the

smallest number of train changes. Note that the first criterion requires

the information about the expected traveling time between stations and

the time needed for train changes whereas the other two criteria do not

require such information.

b. A natural approach is to mimic subway plans by representing sta-

tions by vertices of a graph, with two vertices connected by an edge if

there is a train line between the corresponding stations. If the time spent

on changing a train is to be taken into account (e.g., because the station

in question is on more than one line), the station should be represented

by more then one vertex.

7. a. Find a permutation of  given cities for which the sum of the distances

between consecutive cities in the permutation plus the distance between

its last and first city is as small as possible.

b. Partition all the graph’s vertices into the smallest number of disjoint

subsets so that there is no edge connecting vertices from the same subset.

8. a. Create a graph whose vertices represent the map’s regions and the

edges connect two vertices if and only if the corresponding regions have a

common border (and therefore cannot be colored the same color). Here

20



is the graph for the map given:

b

c

b

a d
c

e f

Solving the graph coloring problem for this graph yields the map’s color-

ing with the smallest number of colors possible.

b. Without loss of generality, we can assign colors 1 and 2 to vertices

 and , respectively. This forces the following color assignment to the

remaining vertices: 3 to  2 to  3 to  4 to  Thus, the smallest number

of colors needed for this map is four.

Note: It’s a well-known fact that any map can be colored in four colors

or less. This problem–known as the Four-Color Problem–has remained

unresolved for more than a century until 1976 when it was finally solved by

the American mathematicians K. Appel and W. Haken by a combination

of mathematical arguments and extensive computer use.

9. If  = 2, the answer is always “yes”; so, we may assume that  ≥ 3

Select three points 1 2 and 3 from the set given. Write an equation

of the perpendicular bisector 1 of the line segment with the endpoints at

1 and 2, which is the locus of points equidistant from 1 and 2. Write

an equation of the perpendicular bisector 2 of the line segment with the

endpoints at 2 and 3, which is the locus of points equidistant from 2
and 3. Find the coordinates ( ) of the intersection point  of the lines

1 and 2 by solving the system of two equations in two unknowns  and

 (If the system has no solutions, return “no”: such a circumference

does not exist.) Compute the distances (or much better yet the distance

squares!) from  to each of the points ,  = 3 4   and check whether

all of them are the same: if they are, return “yes,” otherwise, return “no”.

10. n/a

21



Exercises 1.4

1. Describe how one can implement each of the following operations on an

array so that the time it takes does not depend on the array’s size .

a. Delete the th element of an array (1 ≤  ≤ )

b. Delete the th element of a sorted array (the remaining array has

to stay sorted, of course).

2. If you have to solve the searching problem for a list of  numbers, how

can you take advantage of the fact that the list is known to be sorted?

Give separate answers for

a. lists represented as arrays.

b. lists represented as linked lists.

3. a. Show the stack after each operation of the following sequence that

starts with the empty stack:

push(a), push(b), pop, push(c), push(d), pop

b. Show the queue after each operation of the following sequence that

starts with the empty queue:

enqueue(a), enqueue(b), dequeue, enqueue(c), enqueue(d), dequeue

4. a. Let  be the adjacency matrix of an undirected graph. Explain what

property of the matrix indicates that

i. the graph is complete.

ii. the graph has a loop, i.e., an edge connecting a vertex to itself.

iii. the graph has an isolated vertex, i.e., a vertex with no edges incident

to it.

b. Answer the same questions for the adjacency list representation.

5. Give a detailed description of an algorithm for transforming a free tree

into a tree rooted at a given vertex of the free tree.

6. Prove the inequalities that bracket the height of a binary tree with 

vertices:

blog2 c ≤  ≤ − 1

7. Indicate how the ADT priority queue can be implemented as

a. an (unsorted) array.

22



b. a sorted array.

c. a binary search tree.

8. How would you implement a dictionary of a reasonably small size  if

you knew that all its elements are distinct (e.g., names of 50 states of the

United States)? Specify an implementation of each dictionary operation.

9. For each of the following applications, indicate the most appropriate data

structure:

a. answering telephone calls in the order of their known priorities.

b. sending backlog orders to customers in the order they have been re-

ceived.

c. implementing a calculator for computing simple arithmetical expres-

sions.

10. Anagram checking Design an algorithm for checking whether two given

words are anagrams, i.e., whether one word can be obtained by permut-

ing the letters of the other. (For example, the words tea and eat are

anagrams.)

23



Hints to Exercises 1.4

1. a. Take advantage of the fact that the array is not sorted.

b. We used this trick in implementing one of the algorithms in Section

1.1.

2. a. For a sorted array, there is a spectacularly efficient algorithm you al-

most certainly have heard about.

b. Unsuccessful searches can be made faster.

3. a. Push(x) puts x on the top of the stack; pop deletes the item from the

top of the stack.

b. Enqueue(x) adds x to the rear of the queue; dequeue deletes the item

from the front of the queue.

4. Just use the definitions of the graph properties in question and data struc-

tures involved.

5. There are two well-known algorithms that can solve this problem. The

first uses a stack, the second uses a queue. Although these algorithms

are discussed later in the book, do not miss this chance to discover them

by yourself!

6. The inequality  ≤ − 1 follows immediately from the height’s definition.

The lower bound inequality follows from inequality 2+1 − 1 ≥  which

can be proved by considering the largest number of vertices a binary tree

of height  can have.

7. You need to indicate how each of the three operations of the priority queue

will be implemented.

8. Because of insertions and deletions, using an array of the dictionary’s

elements (sorted or unsorted) is not the best implementation possible.

9. You need to know about the postfix notation in order to answer one of

these questions. (If you are not familiar with it, find the information on

the Internet.)

10. There are several algorithms for this problem. Keep in mind that the

words may contain multiple occurrences of the same letter.

24



Solutions to Exercises 1.4

1. a. Replace the th element with the last element and decrease the array

size by 1.

b. Replace the th element with a special symbol that cannot be a value

of the array’s element (e.g., 0 for an array of positive numbers) to mark

the th position as empty. (This method is sometimes called the “lazy

deletion”.)

2. a. Use binary search (see Section 4.4 if you are not familiar with this

algorithm).

b. When searching in a sorted linked list, stop as soon as an element

greater than or equal to the search key is encountered.

3. a.



() ()   ()  ()   

     

b.

() ()  () () 

     

4. a. For the adjacency matrix representation:

i. A graph is complete if and only if all the elements of its adjacency

matrix except those on the main diagonal are equal to 1, i.e., [ ] = 1

for every 1 ≤   ≤   6= 

ii. A graph has a loop if and only if its adjacency matrix has an ele-

ment equal to 1 on its main diagonal, i.e., [ ] = 1 for some 1 ≤  ≤ .

iii. An (undirected, without loops) graph has an isolated vertex if and

only if its adjacency matrix has an all-zero row.

b. For the adjacency list representation:

i. A graph is complete if and only if each of its linked lists contains

all the other vertices of the graph.

ii. A graph has a loop if and only if one of its adjacency lists contains the

25



vertex defining the list.

iii. An (undirected, without loops) graph has an isolated vertex if and

only if one of its adjacency lists is empty.

5. The first algorithm works as follows. Mark a vertex to serve as the root

of the tree, make it the root of the tree to be constructed, and initialize

a stack with this vertex. Repeat the following operation until the stack

becomes empty: If there is an unmarked vertex adjacent to the vertex on

the top to the stack, mark the former vertex, attach it as a child of the

top’s vertex in the tree, and push it onto the stack; otherwise, pop the

vertex off the top of the stack.

The second algorithm works as follows. Mark a vertex to serve as the

root of the tree, make it the root of the tree to be constructed, and ini-

tialize a queue with this vertex. Repeat the following operations until

the queue becomes empty: If there are unmarked vertices adjacent to the

vertex at the front of the queue, mark all of them, attach them as children

to the front vertex in the tree, and add them to the queue; then dequeue

the queue.

6. Since the height is defined as the length of the longest simple path from

the tree’s root to its leaf, such a pass will include no more than  vertices,

which is the total number of vertices in the tree. Hence,  ≤ − 1
The binary tree of height  with the largest number of vertices is the full

tree that has all its + 1 levels filled with the largest number of vertices

possible. The total number of vertices in such a tree is
P

=0 2
 = 2+1−1

Hence, for any binary tree with  vertices and height 

2+1 − 1 ≥ 

This implies that

2+1 ≥ + 1

or, after taking binary logarithms of both hand sides and taking into

account that + 1 is an integer,

+ 1 ≥ dlog2(+ 1)e

Since dlog2(+ 1)e = blog2 c+ 1 (see Appendix A), we finally obtain

+ 1 ≥ blog2 c+ 1 or  ≥ blog2 c

7. a. Insertion can be implemented by adding the new item after the ar-

ray’s last element. Finding the largest element requires a standard scan

26



through the array to find its largest element. Deleting the largest ele-

ment [] can be implemented by exchanging it with the last element and

decreasing the array’s size by 1.

b. We will assume that the array [0 − 1] representing the priority
queue is sorted in ascending order. Inserting a new item of value  can be

done by scanning the sorted array, say, left to right until an element []

≥  or the end of the array is reached. (A faster algorithm for finding

a place for inserting a new element is binary search discussed in Section

4.4.) In the former case, the new item is inserted before [] by first mov-

ing [− 1]  [] one position to the right; in the latter case, the new
item is simply appended after the last element of the array. Finding the

largest element is done by simply returning the value of the last element

of the sorted array. Deletion of the largest element is done by decreasing

the array’s size by one.

c. Insertion of a new element is done by using the standard algorithm

for inserting a new element in a binary search tree: recursively, the new

key is inserted in the left or right subtree depending on whether it is

smaller or larger than the root’s key. Finding the largest element will

require finding the rightmost element in the binary tree by starting at

the root and following the chain of the right children until a vertex with

no right subtree is reached. The key of that vertex will be the largest

element in question. Deleting it can be done by making the right pointer

of its parent to point to the left child of the vertex being deleted;. if the

rightmost vertex has no left child, this pointer is made “null”. Finally, if

the rightmost vertex has no parent, i.e., if it happens to be the root of the

tree, its left child becomes the new root; if there is no left child, the tree

becomes empty.

8. Use a bit vector, i.e., an array on  bits in which the th bit is 1 if

the th element of the underlying set is currently in the dictionary and

0 otherwise. The search, insertion, and deletion operations will require

checking or changing a single bit in this array.

9. Use: (a) a priority queue; (b) a queue; (c) a stack (and reverse Polish

notation–a clever way of representing arithmetical expressions without

parentheses, which is usually studied in a data structures course).

10. The most straightforward solution is to search for each successive letter

of the first word in the second one. If the search is successful, delete the

first occurrence of the letter in the second word, stop otherwise.

Another solution is to sort the letters of each word and then compare

27



them in a simple parallel scan.

We can also generate and compare “letter vectors” of the given words:

[] = the number of occurrences of the alphabet’s th letter in the word

 Such a vector can be generated by initializing all its components to

0 and then scanning the word and incrementing appropriate letter counts

in the vector.

28


