

1.1 SOLUTIONS _____

Notes: The key exercises are 7 (or 11 or 12), 19–22, and 25. For brevity, the symbols R1, R2,..., stand for row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section.

1.	$ \begin{array}{c} x_1 + 5x_2 = \ 7 \\ -2x_1 - 7x_2 = -5 \end{array} \begin{bmatrix} 1 & 5 & 7 \\ -2 & -7 & -5 \end{bmatrix} $		
	Replace R2 by $R2 + (2)R1$ and obtain:	$x_1 + 5x_2 = 7$ $3x_2 = 9$	$\begin{bmatrix} 1 & 5 & 7 \\ 0 & 3 & 9 \end{bmatrix}$
	Scale R2 by 1/3:	$x_1 + 5x_2 = 7$ $x_2 = 3$	$\begin{bmatrix} 1 & 5 & 7 \\ 0 & 1 & 3 \end{bmatrix}$
	Replace R1 by R1 + (-5) R2:	$x_1 = -8$ $x_2 = 3$	$\begin{bmatrix} 1 & 0 & -8 \\ 0 & 1 & 3 \end{bmatrix}$
	The solution is $(x_1, x_2) = (-8, 3)$, or simply $(-8, 3)$.		
2.	$2x_1 + 4x_2 = -4 \qquad \begin{bmatrix} 2 & 4 & -4 \\ 5x_1 + 7x_2 = 11 \end{bmatrix}$		
	Scale R1 by 1/2 and obtain:	$x_1 + 2x_2 = -2$ $5x_1 + 7x_2 = 11$	$\begin{bmatrix} 1 & 2 & -2 \\ 5 & 7 & 11 \end{bmatrix}$
	Replace R2 by R2 + (-5) R1:	$x_1 + 2x_2 = -2 -3x_2 = 21$	$\begin{bmatrix} 1 & 2 & -2 \\ 0 & -3 & 21 \end{bmatrix}$
	Scale R2 by $-1/3$:	$x_1 + 2x_2 = -2$ $x_2 = -7$	$\begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & -7 \end{bmatrix}$
	Replace R1 by R1 + (-2) R2:	$x_1 = 12$ $x_2 = -7$	$\begin{bmatrix} 1 & 0 & 12 \\ 0 & 1 & -7 \end{bmatrix}$
	The solution is $(u, v) = (12, 7)$ or simply $(12, 7)$		

The solution is $(x_1, x_2) = (12, -7)$, or simply (12, -7).

3. The point of intersection satisfies the system of two linear equations:

$ \begin{array}{c} x_1 + 5x_2 = 7 \\ x_1 - 2x_2 = -2 \end{array} \begin{bmatrix} 1 & 5 & 7 \\ 1 & -2 & -2 \end{bmatrix} $		
Replace R2 by R2 + (-1) R1 and obtain:	$x_1 + 5x_2 = 7$ $-7x_2 = -9$	$\begin{bmatrix} 1 & 5 & 7 \\ 0 & -7 & -9 \end{bmatrix}$
Scale R2 by $-1/7$:	$x_1 + 5x_2 = 7$ $x_2 = 9/7$	$\begin{bmatrix} 1 & 5 & 7 \\ 0 & 1 & 9/7 \end{bmatrix}$
Replace R1 by R1 + (-5) R2:	$x_1 = 4/7$ $x_2 = 9/7$	$\begin{bmatrix} 1 & 0 & 4/7 \\ 0 & 1 & 9/7 \end{bmatrix}$

The point of intersection is $(x_1, x_2) = (4/7, 9/7)$.

4. The point of intersection satisfies the system of two linear equations:

$ \begin{array}{c} x_1 - 5x_2 = 1 \\ 3x_1 - 7x_2 = 5 \end{array} \begin{bmatrix} 1 & -5 & 1 \\ 3 & -7 & 5 \end{bmatrix} $		
Replace R2 by R2 + (-3) R1 and obtain:	$x_1 - 5x_2 = 1$ $8x_2 = 2$	$\begin{bmatrix} 1 & -5 & 1 \\ 0 & 8 & 2 \end{bmatrix}$
Scale R2 by 1/8:	$x_1 - 5x_2 = 1$ $x_2 = 1/4$	$\begin{bmatrix} 1 & -5 & 1 \\ 0 & 1 & 1/4 \end{bmatrix}$
Replace R1 by R1 + (5) R2:	$x_1 = 9/4$ $x_2 = 1/4$	$\begin{bmatrix} 1 & 0 & 9/4 \\ 0 & 1 & 1/4 \end{bmatrix}$

The point of intersection is $(x_1, x_2) = (9/4, 1/4)$.

- 5. The system is already in "triangular" form. The fourth equation is $x_4 = -5$, and the other equations do not contain the variable x_4 . The next two steps should be to use the variable x_3 in the third equation to eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by its sum with 3 times R3, and then replace R1 by its sum with -5 times R3.
- 6. One more step will put the system in triangular form. Replace R4 by its sum with -3 times R3, which

produces $\begin{bmatrix} 1 & -6 & 4 & 0 & -1 \\ 0 & 2 & -7 & 0 & 4 \\ 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & -5 & 15 \end{bmatrix}$. After that, the next step is to scale the fourth row by -1/5.

7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third column. But in this case, the third row of the augmented matrix corresponds to the equation 0 x₁ + 0 x₂ + 0 x₃ = 1, or simply, 0 = 1. A system containing this condition has no solution. Further row operations are unnecessary once an equation such as 0 = 1 is evident. The solution set is empty.

8. The standard row operations are:

[1	-4	9	0	[1	-4	9	0	[1	-4	0	0		1	0	0	0
0	1	7	0 ~	0	1	7	0 ~	0	1	0	0	~	0	1	0	0
0	0	2	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \sim$	0	0	1	0	0	0	1	0		0	0	1	0

The solution set contains one solution: (0, 0, 0).

9. The system has already been reduced to triangular form. Begin by scaling the fourth row by 1/2 and then replacing R3 by R3 + (3)R4:

1	-1	0	0	-4]		[1	-1	0	0	-4]	1	-1	0	0	-4]
0	1	-3	0	-7		0	1	-3	0	-7		0	1	-3	0	-7
0	0	1	-3	-1	~	0	0	1	-3	-1	~	0	0	1	0	5
0	0	0	2	4		0	0	0	1	2		0	0	0	1	2

Next, replace R2 by R2 + (3)R3. Finally, replace R1 by R1 + R2:

	1	-1	0	0	-4]		1	0	0	0	4]	
	0	1	0	0	8 5		0	1	0	0	8	
~	0	0	1	0	5	~	0	0	1	0	5	
	0	0	0	1	2		0	0	0	1	2	

The solution set contains one solution: (4, 8, 5, 2).

10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the -4 and 3 above it to zeros. That is, replace R2 by R2 + (4)R4 and replace R1 by R1 + (-3)R4. For the final step, replace R1 by R1 + (2)R2.

[1	-2	0	3	-2]	[1	-2	0	0	7]	[1	0	0	0	-3
0	1	0	-4	7	0	1	0	0	-5	0	1	0	0	-5
0	0	1	0	6	0	0	1	0	6	~ 0	0	1	0	6
0	0	0	1	-3	0	0	0	1	-3	0	0	0	1	$ \begin{array}{c} -3 \\ -5 \\ 6 \\ -3 \end{array} $

The solution set contains one solution: (-3, -5, 6, -3).

11. First, swap R1 and R2. Then replace R3 by R3 + (-3)R1. Finally, replace R3 by R3 + (2)R2.

[0	1	4	-5]	[1	3	5	-2]	[1	3	5	-2]	[1	3	5	-2]
1	3	5	-2 ~	0	1	4	-5 ~	0	1	4	-5 ~	0	1	4	-5
3	7	7	$\begin{bmatrix} -5 \\ -2 \\ 6 \end{bmatrix} \sim$	3	7	7	6	0	-2	-8	12	0	0	0	2

The system is inconsistent, because the last row would require that 0 = 2 if there were a solution. The solution set is empty.

12. Replace R2 by R2 + (-3)R1 and replace R3 by R3 + (4)R1. Finally, replace R3 by R3 + (3)R2.

1	-3	4	-4]		1	-3	4	-4		1	-3	4	-4]	
3	-7	7	-8	~	0	2	-5	4	~	0	2	-5	4	
-4	6	-1	7		0	-6	15	-9		0	0	0	3	

The system is inconsistent, because the last row would require that 0 = 3 if there were a solution. The solution set is empty.

Replace R2 by R2 + (-2)R1. Then interchange R2 and R3. Next replace R3 by R3 + (-2)R2. Then divide R3 by 5. Finally, replace R1 by R1 + (-2)R3.

Γ	1	0	-3	8	[1	0	-3	8	[1	0	-3	8	[1	0	-3	8]
				7 ~												
L	0	1	5	-2	0	1	5	-2	0	2	15	-9]	0	0	5	-5]
	[1	0	-3	8]	۲.	1 0	0	5								
~	0	1	5	8 -2	~ () 1	0	3	. The	solı	ution	is (5, 3	8, -1)			
	0	0	1	-1) () 1	-1_								

14. Replace R2 by R2 + R1. Then interchange R2 and R3. Next replace R3 by R3 + 2R2. Then divide R3 by 7. Next replace R2 by R2 + (-1)R3. Finally, replace R1 by R1 + 3R2.

 $\begin{bmatrix} 1 & -3 & 0 & 5 \\ -1 & 1 & 5 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & 5 \\ 0 & -2 & 5 & 7 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & 5 \\ 0 & 1 & 1 & 0 \\ 0 & -2 & 5 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & 5 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & 5 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & -3 & 0 & 5 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$ The solution is (2, -1, 1).

15. First, replace R4 by R4 + (-3)R1, then replace R3 by R3 + (2)R2, and finally replace R4 by R4 + (3)R3.

[]	1	0								2				0	2]
0)	1	0	-3	3	0	1	0	-3	3	0	1	0	-3	3
0)	-2	3	2	1	$\tilde{0}$	-2	3	2	3 1	~ 0	0	3	-4	7
2	3	0	0	7	-5	0	0	-9	7	-11_	0	0	-9	7	-11
	[1	0	3	0	2]									
		1	0	-3	3										
~	0	0	3	-4	7	•									
	0	0	0	-5	10										

The resulting triangular system indicates that a solution exists. In fact, using the argument from Example 2, one can see that the solution is unique.

16. First replace R4 by R4 + (2)R1 and replace R4 by R4 + (-3/2)R2. (One could also scale R2 before adding to R4, but the arithmetic is rather easy keeping R2 unchanged.) Finally, replace R4 by R4 + R3.

[1	0	0	-2	-3]	ſ	1	0	0	-2	-3]		[1	0	0	-2	-3]	ſ	1	0	0	-2	-3]
0	2	2	0	0		0	2	2	0	0		0	2	2	0	0		0	2	2	0	0
0	0	1	3	1	~	0	0	1	3	1	~	0	0	1	3	1	~	0	0	1	3	1
2	3	2	0 3 1	5		0	3	2	-3	-1		0	0	-1	-3	-1		0	0	0	0	0

The system is now in triangular form and has a solution. The next section discusses how to continue with this type of system.