

1.1 SOLUTIONS

Notes: The key exercises are 7 (or 11 or 12), 19-22, and 25 . For brevity, the symbols R1, R2,..., stand for row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section.

1. $\begin{aligned} x_{1}+5 x_{2} & =7 \\ -2 x_{1}-7 x_{2} & =-5\end{aligned} \quad\left[\begin{array}{rrr}1 & 5 & 7 \\ -2 & -7 & -5\end{array}\right]$

Replace R2 by R2 + (2)R1 and obtain:

Scale R2 by 1/3:

$$
\begin{aligned}
x_{1}+5 x_{2} & =7 \\
3 x_{2} & =9 \\
x_{1}+5 x_{2} & =7 \\
x_{2} & =3 \\
x_{1} \quad & =-8 \\
x_{2} & =3
\end{aligned} \quad\left[\begin{array}{lll}
1 & 5 & 7 \\
0 & 3 & 9
\end{array}\right]
$$

The solution is $\left(x_{1}, x_{2}\right)=(-8,3)$, or simply $(-8,3)$.
2. $\begin{aligned} & 2 x_{1}+4 x_{2}=-4 \\ & 5 x_{1}+7 x_{2}=11\end{aligned} \quad\left[\begin{array}{lll}2 & 4 & -4 \\ 5 & 7 & 11\end{array}\right]$

Scale R1 by $1 / 2$ and obtain:

Replace R2 by R2 + (-5)R1:

$$
\left.\begin{array}{rlrl}
x_{1}+2 x_{2} & =-2 \\
5 x_{1}+7 x_{2} & =11 \\
x_{1}+2 x_{2} & =-2 \\
-3 x_{2} & =21 \\
x_{1}+2 x_{2} & =-2 \\
x_{2} & =-7 \\
x_{1} & & {\left[\begin{array}{lll}
1 & 2 & -2 \\
5 & 7 & 11
\end{array}\right]} \\
& & {\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -3 & 21
\end{array}\right]} \\
x_{2} & =-7 & & {\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & 1 & -7
\end{array}\right]} \\
0 & 0 & 12 \\
0 & 1 & -7
\end{array}\right]
$$

Replace R1 by R1 + (-2)R2:
The solution is $\left(x_{1}, x_{2}\right)=(12,-7)$, or simply $(12,-7)$.
3. The point of intersection satisfies the system of two linear equations:

$$
\begin{aligned}
& x_{1}+5 x_{2}=7 \\
& x_{1}-2 x_{2}=-2
\end{aligned} \quad\left[\begin{array}{rrr}
1 & 5 & 7 \\
1 & -2 & -2
\end{array}\right]
$$

Replace R2 by R2 + (-1)R1 and obtain:

$$
\left.\begin{array}{rlrl}
x_{1}+5 x_{2} & =7 \\
-7 x_{2} & =-9 & & {\left[\begin{array}{rrr}
1 & 5 & 7 \\
0 & -7 & -9
\end{array}\right]} \\
x_{1}+5 x_{2} & =7 \\
x_{2} & =9 / 7 \\
x_{1} & & =4 / 7 \\
x_{2} & =9 / 7
\end{array} \quad \begin{array}{rcc}
1 & 5 & 7 \\
0 & 1 & 9 / 7
\end{array}\right]
$$

The point of intersection is $\left(x_{1}, x_{2}\right)=(4 / 7,9 / 7)$.
4. The point of intersection satisfies the system of two linear equations:

$$
\begin{array}{r}
x_{1}-5 x_{2}=1 \\
3 x_{1}-7 x_{2}=5
\end{array} \quad\left[\begin{array}{lll}
1 & -5 & 1 \\
3 & -7 & 5
\end{array}\right]
$$

Replace R2 by R2 + (-3)R1 and obtain:

Scale R2 by 1/8:

$$
\begin{array}{rlrl}
x_{1}-5 x_{2}=1 \\
8 x_{2} & =2
\end{array} \quad\left[\begin{array}{rrr}
1 & -5 & 1 \\
0 & 8 & 2
\end{array}\right]
$$

The point of intersection is $\left(x_{1}, x_{2}\right)=(9 / 4,1 / 4)$.
5. The system is already in "triangular" form. The fourth equation is $x_{4}=-5$, and the other equations do not contain the variable x_{4}. The next two steps should be to use the variable x_{3} in the third equation to eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by its sum with 3 times R3, and then replace R1 by its sum with -5 times R3.
6. One more step will put the system in triangular form. Replace R4 by its sum with -3 times R3, which produces $\left[\begin{array}{rrrrr}1 & -6 & 4 & 0 & -1 \\ 0 & 2 & -7 & 0 & 4 \\ 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & -5 & 15\end{array}\right]$. After that, the next step is to scale the fourth row by $-1 / 5$.
7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third column. But in this case, the third row of the augmented matrix corresponds to the equation $0 x_{1}+0$ $x_{2}+0 x_{3}=1$, or simply, $0=1$. A system containing this condition has no solution. Further row operations are unnecessary once an equation such as $0=1$ is evident. The solution set is empty.
8. The standard row operations are:
$\left[\begin{array}{rrrr}1 & -4 & 9 & 0 \\ 0 & 1 & 7 & 0 \\ 0 & 0 & 2 & 0\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -4 & 9 & 0 \\ 0 & 1 & 7 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -4 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \sim\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
The solution set contains one solution: ($0,0,0$).
9. The system has already been reduced to triangular form. Begin by scaling the fourth row by $1 / 2$ and then replacing R3 by R3 + (3)R4:
$\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & -4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 2 & 4\end{array}\right] \sim\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & -4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 1 & 2\end{array}\right] \sim\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & -4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$
Next, replace R2 by R2 + (3)R3. Finally, replace R1 by R1 + R2:

$$
\sim\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & -4 \\
0 & 1 & 0 & 0 & 8 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 4 \\
0 & 1 & 0 & 0 & 8 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

The solution set contains one solution: $(4,8,5,2)$.
10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the -4 and 3 above it to zeros. That is, replace R2 by R2 + (4)R4 and replace R1 by R1 + (-3)R4. For the final step, replace R1 by R1 + (2)R2.
$\left[\begin{array}{rrrrr}1 & -2 & 0 & 3 & -2 \\ 0 & 1 & 0 & -4 & 7 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3\end{array}\right] \sim\left[\begin{array}{rrrrr}1 & -2 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 & -5 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3\end{array}\right] \sim\left[\begin{array}{rrrrr}1 & 0 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 & -5 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3\end{array}\right]$
The solution set contains one solution: $(-3,-5,6,-3)$.
11. First, swap R1 and R2. Then replace R3 by R3 + (-3)R1. Finally, replace R3 by R3 + (2)R2.
$\left[\begin{array}{rrrr}0 & 1 & 4 & -5 \\ 1 & 3 & 5 & -2 \\ 3 & 7 & 7 & 6\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 3 & 5 & -2 \\ 0 & 1 & 4 & -5 \\ 3 & 7 & 7 & 6\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 3 & 5 & -2 \\ 0 & 1 & 4 & -5 \\ 0 & -2 & -8 & 12\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 3 & 5 & -2 \\ 0 & 1 & 4 & -5 \\ 0 & 0 & 0 & 2\end{array}\right]$
The system is inconsistent, because the last row would require that $0=2$ if there were a solution. The solution set is empty.
12. Replace R2 by R2 + (-3)R1 and replace R3 by R3 + (4)R1. Finally, replace R3 by R3 + (3)R2.

$$
\left[\begin{array}{rrrr}
1 & -3 & 4 & -4 \\
3 & -7 & 7 & -8 \\
-4 & 6 & -1 & 7
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 4 & -4 \\
0 & 2 & -5 & 4 \\
0 & -6 & 15 & -9
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 4 & -4 \\
0 & 2 & -5 & 4 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

The system is inconsistent, because the last row would require that $0=3$ if there were a solution. The solution set is empty.
13. Replace R2 by R2 + (-2)R1. Then interchange R2 and R3. Next replace R3 by R3 + (-2)R2. Then divide R3 by 5 . Finally, replace R1 by R1 + (-2)R3.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 0 & -3 & 8 \\
2 & 2 & 9 & 7 \\
0 & 1 & 5 & -2
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & -3 & 8 \\
0 & 2 & 15 & -9 \\
0 & 1 & 5 & -2
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & -3 & 8 \\
0 & 1 & 5 & -2 \\
0 & 2 & 15 & -9
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & -3 & 8 \\
0 & 1 & 5 & -2 \\
0 & 0 & 5 & -5
\end{array}\right]} \\
& \sim\left[\begin{array}{rrrr}
1 & 0 & -3 & 8 \\
0 & 1 & 5 & -2 \\
0 & 0 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right] . \text { The solution is (5, 3, -1). }
\end{aligned}
$$

14. Replace R2 by R2 + R1. Then interchange R2 and R3. Next replace R3 by R3 + 2R2. Then divide R3 by 7. Next replace R2 by R2 + (-1)R3. Finally, replace R1 by R1 + 3R2.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
-1 & 1 & 5 & 2 \\
0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & -2 & 5 & 7 \\
0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & -2 & 5 & 7
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & 0 & 7 & 7
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
& \sim\left[\begin{array}{rrrr}
1 & -3 & 0 & 5 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] . \text { The solution is (2,-1, 1). }
\end{aligned}
$$

15. First, replace R4 by R4 + (-3)R1, then replace R3 by R3 + (2)R2, and finally replace R4 by R4 + (3)R3.

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & -2 & 3 & 2 & 1 \\
3 & 0 & 0 & 7 & -5
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & -2 & 3 & 2 & 1 \\
0 & 0 & -9 & 7 & -11
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & 0 & 3 & -4 & 7 \\
0 & 0 & -9 & 7 & -11
\end{array}\right]} \\
& \sim\left[\begin{array}{rrrrr}
1 & 0 & 3 & 0 & 2 \\
0 & 1 & 0 & -3 & 3 \\
0 & 0 & 3 & -4 & 7 \\
0 & 0 & 0 & -5 & 10
\end{array}\right] .
\end{aligned}
$$

The resulting triangular system indicates that a solution exists. In fact, using the argument from Example 2, one can see that the solution is unique.
16. First replace R4 by R4 + (2)R1 and replace R4 by R4 + (-3/2)R2. (One could also scale R2 before adding to R4, but the arithmetic is rather easy keeping R2 unchanged.) Finally, replace R4 by R4 + R3.

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
-2 & 3 & 2 & 1 & 5
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 3 & 2 & -3 & -1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & -1 & -3 & -1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & -2 & -3 \\
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The system is now in triangular form and has a solution. The next section discusses how to continue with this type of system.

