1. Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

$$\left\{-\frac{1}{2}, \frac{16}{3}, -\frac{81}{4}, \frac{256}{5}, -\frac{625}{6}, \dots\right\}$$

- 2. Find the partial sum S_7 of the series $\sum_{m=1}^{\infty} \frac{6}{10+8^m}$. Give your answer to five decimal places.
- 3. How many terms of the series $\sum_{m=2}^{\infty} \frac{12}{6m(\ln m)^2}$ would you need to add to find its sum to within 0.02?
- 4. Test the series for convergence or divergence.

$$\sum_{k=5}^{\infty} \frac{5}{k(\ln k)^7}$$

5. Use the sum of the first 10 terms to approximate the sum of the series. Estimate the error.

$$\sum_{n=1}^{\infty} \frac{1}{1+4^n}$$

6. Test the series for convergence or divergence.

$$\sum_{n=2}^{\infty} (-1)^n \frac{n}{5 \ln n}$$

7. Test the series for convergence or divergence.

$$\sum_{m=1}^{\infty} (-4)^m \ \frac{\ln m}{\sqrt{m}}$$

8. Use the binomial series to expand the function as a power series. Find the radius of convergence.

$$\frac{1}{(4+x)^5}$$

9. Find the sum of the series.

$$\sum_{n=0}^{\infty} \frac{2^n}{3^n n!}$$

10. Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of *x* for which the given approximation is accurate to within the stated error.

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} \quad |error| < 0.08$$

Write a such that -a < x < a.

11. Write the first five terms of the sequence $\{a_n\}$ whose n^{th} term is given.

$$a_n = \frac{n+7}{6n-1}$$

12. Find an expression for the n^{th} term of the sequence. (Assume that the pattern continues.)

$$\left\{\frac{2}{25}, \frac{4}{36}, \frac{6}{49}, \frac{8}{64}, \frac{10}{81}, \cdots\right\}$$

13. Determine whether the given series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} \frac{9^{n} + 8^{n}}{12^{n}}$$

14. Determine whether the given series is convergent or divergent.

$$\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^2}$$

15. Determine whether the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$$

16. Test the series for convergence or divergence.

$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^5 + 8}}$$

17. Determine whether the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+4}$$

18. Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{(n!)^4}{(7n)!}$$

19. Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{9^n}{n! n}$$

20. Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \left[\frac{\ln \left(n^6 \right)}{n} \right]^n$$

Answer Key

1.
$$a_n = \frac{(-1)^n n^4}{n+1}$$

3.
$$m > e^{100}$$

8.
$$|x| < 4$$

9.
$$e^{2/3}$$

10.
$$-1.965 < x < 1.965$$

11.
$$\frac{8}{5}$$
, $\frac{9}{11}$, $\frac{10}{17}$, $\frac{11}{23}$, $\frac{12}{29}$

12.
$$a_n = \frac{2n}{(n+4)^2}$$

1. Determine whether the sequence converges or diverges. If it converges, find the limit.

$$a_n = 2e^{4n/(n+2)}$$

- 2. Find the exact value of the limit of the sequence defined by $a_1 = \sqrt{4}$, $a_{n+1} = \sqrt{4 + a_n}$.
- 3. The terms of a series are defined recursively by the equations $a_1 = 6$, $a_{n+1} = \frac{7n+1}{6n+3}a_n$.

Determine whether $\sum a_n$ converges or diverges.

- 4. Express the number $0.\overline{81}$ as a ratio of integers.
- 5. Use the Integral Test to determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{1}{8n+2}$$

- 6. How many terms of the series $\sum_{m=2}^{\infty} \frac{12}{6m(\ln m)^2}$ would you need to add to find its sum to within 0.02?
- 7. Test the series for convergence or divergence.

$$\sum_{k=5}^{\infty} \frac{5}{k(\ln k)^7}$$

8. Determine whether the sequence convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 - 6n + 10}$$

9. Test the series for convergence or divergence.

$$\sum_{k=1}^{\infty} \frac{(-6)^{k+1}}{7^{2k}}$$

10. Test the series for convergence or divergence.

$$\sum_{m=1}^{\infty} \frac{4^m m^3}{m!}$$

11. Find a power series representation for the function and determine the radius of convergence.

$$f(x) = \arctan\left(\frac{x}{3}\right)$$

12. Find the Maclaurin series for f(x) using the definition of a Maclaurin series.

$$f(x) = (3+x)^{-3}$$

13. Use the binomial series to expand the function as a power series. Find the radius of convergence.

$$\sqrt[4]{1+x^6}$$

14. Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of *x* for which the given approximation is accurate to within the stated error.

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} \quad |error| < 0.08$$

Write a such that -a < x < a.

15. Use the sum of the first 9 terms to approximate the sum of the following series.

$$\sum_{n=1}^{\infty} \frac{6}{n^7 + n^2}$$

Write your answer to six decimal places.

16. Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n \sqrt{n+7}}$$

17. Determine whether the series converges or diverges.

$$\sum_{n=1}^{\infty} (-1)^n n \sin\left(\frac{\pi}{9n}\right)$$

18. Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n \sqrt{n+6}}$$

19. Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{(n!)^4}{(7n)!}$$

20. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[6]{n}}$$

Answer Key

2.
$$\frac{1+\sqrt{17}}{2}$$

- 3. diverges
- 4. $\frac{9}{11}$
- 5. divergent
- 6. $m > e^{100}$
- 7. convergent
- 8. converges
- 9. convergent
- 10. convergent

11.
$$\sum_{n=0}^{\infty} (-1)^n \frac{\left(\frac{x}{3}\right)^{2n+1}}{2n+1}; R = 3$$

12.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(n+2) \left(\frac{x}{3}\right)^n}{54}$$

13.
$$|x| < 1$$

14.
$$-1.965 < x < 1.965$$

- 16. Convergent
- 17. Diverges
- 18. Convergent
- 19. converges
- 20. conditionally convergent

Select the correct answer for each question.

- 1. Determine whether the sequence defined by $a_n = \frac{n^2 5}{6n^2 + 1}$ converges or diverges. If it converges, find its limit.
 - a. $\frac{1}{6}$
 - b. -5
 - c. $-\frac{5}{6}$
 - d. Diverges
- 2. Determine whether the sequence defined by $a_n = \frac{5^n}{8^n + 1}$ converges or diverges. If it converges, find its limit.
 - a. 1
 - b. $\frac{5}{8}$
 - c. 0
 - d. Diverges
 - _ 3. Find the value of the limit for the sequence given.

$$\left\{\frac{1\cdot 9\cdot 17\cdots (7n+1)}{\left(7n\right)^{2}}\right\}$$

- a. (
- b. -1
- c. π
- d. 3
- e.]

 4.	If \$600 is invested at 4% interest, compounded annually, then after n years the investment is
	worth $\alpha_n = 600(1.04)^n$ dollars. Find the size of investment after 7 years.

- a. \$430.21
- b. \$1,860.81
- c. \$1,230.81
- d. \$789.56
- e. \$1,321.06

$$\sum_{n=0}^{\infty} 5^n 6^{-n+1}$$

- a. 30
- b. 36
- c. 5
- d. Diverges

6. A sequence is
$$\{a_n\}$$
 defined recursively by the equation $a_n = 0.5(a_{n-1} + a_{n-2})$ for $n \ge 3$ where $a_1 = 14$, $a_2 = 14$.

Use your calculator to guess the limit of the sequence.

- a. 6
- b. 14
- c. 26
- d. 17
- e. 15

7. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$-\frac{1}{5} + \frac{1}{25} - \frac{1}{125} + \frac{1}{625} - \cdots$$

- a. $\frac{1}{4}$
- b. $-\frac{1}{5}$
- c. Diverges
- d. $-\frac{1}{6}$
- 8. Find all positive values of u for which the series $\sum_{m=1}^{\infty} 6u^{\ln 7m}$ converges.
 - a. u > 7
 - b. $6 < u < \frac{7}{e}$
 - c. $0 < u < \frac{1}{e}$
 - d. u < 6
 - e. $u > \ln 7$

^	D .	1 1 1	C .1		1 1		1.
9.	Determine	which one	of the	p-series	below	1S	divergent.

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^{03}}$$

b.
$$\sum_{n=1}^{\infty} n^{-4n}$$

c.
$$\sum_{n=1}^{\infty} \frac{1}{n^{3e}}$$

d.
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

____ 10. Find an approximation of the sum of the series accurate to two decimal places.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$

_ 11. Approximate the sum to the indicated accuracy.

$$\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^7}$$
 (five decimal places)

12	Find the radius	of convergence	and the interval	of convergence	of the power series.
 12.	Tilla tile Taulus	of convergence	and the interval	of convergence	of the power series.

$$\sum_{n=0}^{\infty} \frac{(7x)^n}{n!}$$

a.
$$R = 7$$
, $I = (-7, 7)$

b.
$$R = 0$$
, $I = \{0\}$

c.
$$R = 7$$
, $I = [-7, 7]$

d.
$$R = \infty$$
, $I = (-\infty, \infty)$

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-8)^n}{\sqrt{n}}$$

a.
$$R = 1$$
, $I = [7, 9)$

b.
$$R = 1, I = (7, 9]$$

c.
$$R = 8$$
, $I = [-8, 8)$

d.
$$R = 8$$
, $I = (-8, 8)$

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+3}$$

c.
$$(-1,1]$$

e.
$$[-1, 1)$$

____ 15. Find a power series representation for

$$f(t) = \ln(14 - t)$$

a.
$$\ln 14 - \sum_{n=1}^{\infty} \frac{t^n}{14^n}$$

b.
$$\ln 14 - \sum_{n=1}^{\infty} \frac{t^n}{n \cdot 14^n}$$

C.
$$\sum_{n=0}^{\infty} \frac{t^n}{n \cdot 14^n}$$

d.
$$\sum_{n=1}^{\infty} \frac{14t^n}{n^n}$$

e.
$$\ln 14 + \sum_{n=1}^{\infty} \frac{t^{2n}}{14^n}$$

16. Use the power series for
$$f(x) = \sqrt[3]{5+x}$$
 to estimate $\sqrt[3]{5.07}$ correct to four decimal places.

- a. 1.7179
- b. 1.7189
- c. 1.7195
- d. 1.7156
- e. 1.7200

$$\int_0^{0.5} x^2 e^{-x^2} dx \quad |error| < 0.001$$

- a. 0.0354
- b. 0.0125
- c. 0.0625
- d. 0.1447
- e. 0.2774

18.	Use series	to evaluate t	the limit	correct to	three	decimal	places.
 10.	C D C D CII C D	to oralaate t	uic iiiiii	COLLEGE CO		accinia	praces.

$$\lim_{x \to 0} \frac{7x - \tan^{-1}7x}{x^3}$$

Select the correct answer.

- a. 118.933
- b. 114.133
- c. 34.3233
- d. 114.333
- e. 115.933

____ 19. For which positive integers
$$k$$
 is the series $\sum_{n=1}^{\infty} \frac{(n!)^5}{(kn)!}$ convergent?

- a. $k \ge 5$
- b. $k \le 0$
- c. $k \ge 0$
- d. $k \ge 1$
- e. $k \leq -5$

a.
$$\sum_{n=1}^{\infty} \frac{\sin 2n}{n}$$

b.
$$\sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{7}}{n \sqrt{n}}$$

Answer Key

- 1. A
- 2. C
- 3. A
- 4. D
- 5. B
- 6. B
- 7. D
- 8. C
- 9. A
- 10. C
- 11. D
- 12. D
- 13. B
- 14. C
- 15. B
- 16. A
- 17. A
- 18. D
- 19. A
- 20. B

Select the correct answer for each question.

1. Find the value of the limit for the sequence given.

$$\left\{\frac{1\cdot 9\cdot 17\cdots (7n+1)}{(7n)^2}\right\}$$

- a. 0
- b. -1
- c. π
- d. 3
- e. 1

2. Determine whether the sequence defined by $a_n = 5 + 8(-1)^n$ converges or diverges. If it converges, find its limit.

- a. 13
- b. 5
- c. Diverges
- d. -3

3. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} 3^n 4^{-n+1}$$

- a. 12
- b. Diverges
- c. 3
- d. 16

4. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} 5^n 6^{-n+1}$$

- a. 30
- b. 36
- c. 5
- d. Diverges

 5.	A rubber ball is dropped from a height of 8	m onto a flat surface. Each time th	ne ball hits the
	surface, it rebounds to 50% of its previous h	neight. Find the total distance the	ball travels.

- a. 16
- b. 24
- c. 8
- d. 32

6. A sequence is
$$\{a_n\}$$
 defined recursively by the equation $a_n = 0.5(a_{n-1} + a_{n-2})$ for $n \ge 3$ where $a_1 = 14$, $a_2 = 14$.

Use your calculator to guess the limit of the sequence.

- a. 6
- b. 14
- c. 26
- d. 17
- e. 15

$$\frac{2}{1 \cdot 3} - \frac{2^2}{2 \cdot 3^2} + \frac{2^3}{3 \cdot 3^3} - \frac{2^4}{4 \cdot 3^4} + \dots$$

- a. $ln\left(\frac{4}{3}\right)$
- b. $\frac{5e}{3}$
- c. $ln\left(\frac{5}{3}\right)$
- d. $ln\left(\frac{1}{3}\right)$
- e. e^{5/3}

a.
$$u > 7$$

b.
$$6 < u < \frac{7}{e}$$

c.
$$0 < u < \frac{1}{e}$$

d.
$$u < 6$$

e.
$$u > \ln 7$$

_____ 9. Find all values of p for which the series $\sum_{n=1}^{\infty} \frac{\ln(n^9)}{n^p}$ converges.

a.
$$p < 9$$

b.
$$p < 1$$

c.
$$p > 9$$

d.
$$p > 1$$

____ 10. Determine whether the sequence convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 3}$$

a. converges

b. diverges

11. Test the series for convergence or divergence.

$$\sum_{m=1}^{\infty} \frac{(-6)^{m+1}}{4^{8m}}$$

a. The series is convergent.

b. The series is divergent.

_ 12. Determine which series is convergent.

a.
$$-\frac{2}{7} + \frac{3}{8} - \frac{4}{9} + \frac{5}{10} - \frac{6}{11} - \dots$$

b.
$$\frac{4}{3} - \frac{4}{4} + \frac{4}{5} - \frac{4}{6} + \frac{4}{7} - \dots$$

$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^n}{\left(\ln\left(n^6\right)\right)^p}$$

a.
$$p > 1$$

b.
$$p > 0$$

c.
$$p < 0$$

d.
$$p < 1$$

$$\sum_{n=0}^{\infty} \frac{(7x)^n}{n!}$$

a.
$$R = 7$$
, $I = (-7, 7)$

b.
$$R = 0$$
, $I = \{0\}$

c.
$$R = 7$$
, $I = [-7, 7]$

d.
$$R = \infty$$
, $I = (-\infty, \infty)$

15. Suppose that the radius of convergence of the power series
$$\sum_{n=0}^{\infty} c_n x^n$$
 is 9. What is the radius of

convergence of the power series $\sum_{n=0}^{\infty} c_n x^{2n}$.

_ 16. Find the radius of convergence and the interval of convergence of the power series.

$$\sum_{n=0}^{\infty} \left(\frac{nx}{6} \right)^n$$

a.
$$R = 0, I = \{0\}$$

b.
$$R = \infty$$
, $I = (-\infty, \infty)$

c.
$$R = 6$$
, $I = [-6, 6]$

d.
$$R = 6$$
, $I = (-6, 6)$

17. Find the Maclaurin series for f(x) using the definition of the Maclaurin series.

$$f(x) = x \cos(4x)$$

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^{2n+1}}{(2n)!}$$

b.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n+1}}{n!}$$

c.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}$$

d.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n+1}}{(2n)!}$$

e.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{2n} x^{2n+1}}{(2n)!}$$

18. Use multiplication or division of power series to find the first three nonzero terms in the Maclaurin series for the function.

$$f(x) = 5e^{-x^2}\cos 4x$$

a.
$$5\left(1-17x^2+\frac{115}{6}x^4\right)$$

b.
$$5\left(1-9x^2+\frac{115}{6}x^4\right)$$

c.
$$5\left(1-9x+\frac{115}{6}x^4\right)$$

d.
$$5\left(1-9x^2+\frac{97}{6}x^4\right)$$

e.
$$5\left(1-17x^2+\frac{67}{6}x^4\right)$$

19. Given the series $\sum_{m=1}^{\infty} \frac{3m}{4^m(3m+5)}$ estimate the error in using the partial sum s_8 by comparison with the series $\sum_{m=9}^{\infty} \frac{1}{4^m}$.

a.
$$R_8 \le 2.6130051$$

b.
$$R_8 \ge 0.00000052$$

b.
$$R_8 \ge 0.0000052$$

c. $R_8 \le 0.0000051$

d.
$$R_8 \ge 0.00000051$$

e. $R_8 \le 0.0000005$

e.
$$R_8 \le 0.0000005$$

20. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n \arctan n}{n^4}$$

- a. conditionally convergent
- b. absolutely convergent
- c. divergent

Answer Key

- 1. A
- 2. C
- 3. D
- 4. B
- 5. B
- 6. B
- 7. C
- 8. C
- 9. D
- 10. A
- 11. A
- 12. B
- 13. B
- 14. D
- 15. B
- 16. A
- 17. D
- 18. B
- 19. C
- 20. B

- 1. Determine whether the sequence defined by $a_n = \frac{n^2 5}{6n^2 + 1}$ converges or diverges. If it converges, find its limit.
- 2. Determine whether the sequence defined by $a_n = 5 + 8(-1)^n$ converges or diverges. If it converges, find its limit. Select the correct answer.
 - a. 13
 - b. 5
 - c. Diverges
 - d. -3
- 3. Determine whether the sequence defined by $a_n = \frac{\sin 2n}{9n}$ converges or diverges. If it converges, find its limit.
- 4. Determine whether the series is convergent or divergent by expressing S_n as a telescoping sum. If it is convergent, find its sum.

$$\sum_{n=2}^{\infty} \frac{5}{n(n^2-1)}.$$

5. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} 5^n 6^{-n+1}$$

6. A sequence is $\{a_n\}$ defined recursively by the equation $a_n = 0.5(a_{n-1} + a_{n-2})$ for $n \ge 3$ where $a_1 = 14$, $a_2 = 14$.

Use your calculator to guess the limit of the sequence. Select the correct answer.

- a. 6
- b. 14
- c. 26
- d. 17
- e. 15
- 7. Determine which one of the p-series below is convergent.
- 8. Determine which one of the *p*-series below is divergent.
 © 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

- 9. Let $a_k = f(k)$, where f is a continuous, positive, and decreasing function on $[n, \infty)$, and suppose that $\sum_{k=1}^{\infty} a_k$ is convergent. Defining $R_n = S S_n$, where $S = \sum_{n=1}^{\infty} a_n$ and $S_n = \sum_{k=1}^{n} a_k$, we have that $\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_{n}^{\infty} f(x) dx$. Find the maximum error if the sum of the series $\sum_{n=1}^{\infty} \frac{3}{n^2}$ is approximated by S_{40} .
- 10. Test the series for convergence or divergence. Select the correct answer.

$$\sum_{m=1}^{\infty} \frac{(-6)^{m+1}}{4^{8m}}$$

- a. The series is convergent.
- b. The series is divergent.
- 11. Approximate the sum to the indicated accuracy.

$$\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^7}$$
 (five decimal places)

12. Find the radius of convergence and the interval of convergence of the power series.

$$\sum_{n=0}^{\infty} \frac{(7x)^n}{n!}$$

13. Find the radius of convergence and the interval of convergence of the power series.

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-8)^n}{\sqrt{n}}$$

14. Find the radius of convergence and the interval of convergence of the power series. Select the correct answer.

$$\sum_{n=2}^{\infty} \frac{x^n}{n (\ln n)^8}$$

a.
$$R = 0$$
, $I = \{0\}$

b.
$$R = 1$$
, $I = [-1, 1]$

c.
$$R = 1$$
, $I = (-1, 1)$

d.
$$R = \infty$$
, $I = (-\infty, \infty)$

- 15. Use the power series for $f(x) = \sqrt[3]{5+x}$ to estimate $\sqrt[3]{5.07}$ correct to four decimal places.
- 16. Use series to evaluate the limit correct to three decimal places.

$$\lim_{x \to 0} \frac{7x - \tan^{-1}7x}{x^3}$$

Select the correct answer.

17. Use the binomial series to expand the function as a power series. Find the radius of convergence.

$$\frac{x}{\sqrt{16+x^2}}$$

- 18. Given the series $\sum_{m=1}^{\infty} \frac{3m}{4^m(3m+5)}$ estimate the error in using the partial sum s_8 by comparison with the series $\sum_{m=0}^{\infty} \frac{1}{4^m}$.
- 19. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Select the correct answer.

$$\sum_{n=1}^{\infty} \left(\frac{4n^2 + 3}{3n^2 + 4} \right)^n$$

- a. conditionally convergent
- b. absolutely convergent
- c. divergent

20	Determine	whether th	he series is	absolutely	convergent	conditionally	convergent	or divergent	
<i>2</i> 0.	Determine	whether th	116 261162 12	absolutely	convergent,	Conditionally	convergent,	or divergent	•

$$\sum_{n=1}^{\infty} \frac{(-1)^n \arctan n}{n^4}$$

Answer Key

- 1. $\frac{1}{6}$
- 2. C
- 3. 0
- 4. $\frac{5}{4}$
- 5. 36
- 6. B
- $7. \quad \sum_{n=1}^{\infty} \frac{1}{n^6}$
- 8. $\sum_{n=1}^{\infty} \frac{1}{n^{0.3}}$
- 9. 0.075
- 10. A
- 11. 3.97036
- 12. $R = \infty$, $I = (-\infty, \infty)$
- 13. R = 1, I = (7, 9]
- 14. B
- 15. 1.7179
- 16. 114.333
- 17. |x| < 4
- 18. $R_8 \le 0.0000051$
- 19. C
- 20. absolutely convergent

- 1. Determine whether the sequence defined by $a_n = \frac{n^2 5}{6n^2 + 1}$ converges or diverges. If it converges, find its limit. Select the correct answer.
 - a. $\frac{1}{6}$
 - b. -5
 - c. $-\frac{5}{6}$
 - d. Diverges
 - 2. Determine whether the sequence converges or diverges. If it converges, find the limit.

$$a_n = e^{n/(n+6)}$$

3. Find the value of the limit for the sequence given. Select the correct answer.

$$\left\{\frac{1\cdot 9\cdot 17\cdots (7n+1)}{(7n)^2}\right\}$$

- a. 0
- b. -1
- c. π
- d. 3
- e. 1
- 4. If \$600 is invested at 4% interest, compounded annually, then after n years the investment is worth $a_n = 600(1.04)^n$ dollars. Find the size of investment after 7 years.
- 5. A sequence is $\{a_n\}$ defined recursively by the equation $a_n = 0.5(a_{n-1} + a_{n-2})$ for $n \ge 3$ where $a_1 = 14$, $a_2 = 14$.

Use your calculator to guess the limit of the sequence.

6. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$-\frac{1}{5} + \frac{1}{25} - \frac{1}{125} + \frac{1}{625} - \cdots$$

The number k = 1/s is called the multiplier. What is the multiplier if the marginal propensity to consume is 90%?

Select the correct answer.

- a. 4
- b. 3
- c. 6
- d. 7
- e. 10
- 8. Find the sum of the series.

$$\frac{2}{1 \cdot 3} - \frac{2^2}{2 \cdot 3^2} + \frac{2^3}{3 \cdot 3^3} - \frac{2^4}{4 \cdot 3^4} + \dots$$

9. Find an approximation of the sum of the series accurate to two decimal places.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$

10. Determine which series is convergent. Select the correct answer.

a.
$$-\frac{2}{7} + \frac{3}{8} - \frac{4}{9} + \frac{5}{10} - \frac{6}{11} - \dots$$

b.
$$\frac{4}{3} - \frac{4}{4} + \frac{4}{5} - \frac{4}{6} + \frac{4}{7} - \dots$$

11. Approximate the sum to the indicated accuracy.

$$\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^7}$$
 (five decimal places)

12. Find the radius of convergence and the interval of convergence of the power series.

$$\sum_{n=2}^{\infty} \frac{x^n}{n (\ln n)^8}$$

13. Find the radius of convergence and the interval of convergence of the power series. Select the correct answer.

$$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdot \dots \cdot 3n}{4 \cdot 7 \cdot 10 \cdot \dots \cdot (3n+1)} x^{2n+1}$$

a.
$$R = \infty$$
, $I = (-\infty, \infty)$

b.
$$R = 1$$
, $I = (-1, 1)$

c.
$$R = 0$$
, $I = \{0\}$

d.
$$R = 1$$
, $I = [-1, 1]$

- 14. Suppose that the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n x^n$ is 9. What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n x^{2n}$.
- 15. Find the radius of convergence and the interval of convergence of the power series.

$$\sum_{n=0}^{\infty} \frac{x^n}{n+2}$$

16. Find the radius of convergence of the series. Select the correct answer.

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+10)^n}{n \, 6^n}$$

d.
$$[-16, -4)$$

e.
$$[-1, 1]$$

17. Use series to evaluate the limit correct to three decimal places.

$$\lim_{x \to 0} \frac{7x - \tan^{-1}7x}{x^3}$$

Select the correct answer.

- 18. Given the series $\sum_{m=1}^{\infty} \frac{3m}{4^m(3m+5)}$ estimate the error in using the partial sum s_8 by comparison with the series $\sum_{m=0}^{\infty} \frac{1}{4^m}$.
- _____ 19. For which positive integers k is the series $\sum_{n=1}^{\infty} \frac{(n!)^5}{(kn)!}$ convergent? Select the correct answer.
 - a. $k \ge 5$
 - b. $k \le 0$
 - c. $k \ge 0$
 - d. $k \ge 1$
 - e. $k \leq -5$
- 20. Which of the given series are absolutely convergent? Select the correct answer.
 - a. $\sum_{n=1}^{\infty} \frac{\sin 2n}{n}$
 - b. $\sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{7}}{n\sqrt{n}}$

Answer Key

- 1. A
- 2. e
- 3. A
- 4. \$789.56
- 5. 14
- 6. $-\frac{1}{6}$
- 7. E
- 8. $ln\left(\frac{5}{3}\right)$
- 9. -0.90
- 10. B
- 11. 3.97036
- 12. R = 1, I = [-1, 1]
- 13. B
- 14. 3
- 15. R = 1, I = [-1, 1)
- 16. D
- 17. 114.333
- 18. $R_8 \le 0.0000051$
- 19. A
- 20. B

1. Find the value of the limit of the sequence defined	by
--	----

$$a_1 = 1$$
, $a_{n+1} = 6 - \frac{1}{a_n}$.

Select the correct answer.

a.
$$\frac{6+\sqrt{5}}{2}$$

b.
$$\frac{6-\sqrt{10}}{2}$$

c.
$$\frac{6+\sqrt{10}}{2}$$

$$d. \quad \frac{6-\sqrt{5}}{2}$$

e.
$$6 + \sqrt{10}$$

2. Determine whether the sequence converges or diverges. If it converges, find the limit.

$$a_n = e^{n/(n+6)}$$

- 3. Determine whether the sequence defined by $a_n = 5 + 8(-1)^n$ converges or diverges. If it converges, find its limit.
- 4. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} 3^n 4^{-n+1}$$

Select the correct answer.

5. Determine whether the given series converges or diverges. If it converges, find its sum.

$$\sum_{n=1}^{\infty} \left(1 + \frac{5}{n}\right)^n$$

6. Determine whether the given series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} \frac{9n^2 + 3}{2n^2 + 5}$$

- 7. Determine which one of the *p*-series below is convergent.
- 8. How many terms of the series do we need to add in order to find the sum to the indicated accuracy? Select the correct answer.

$$\sum_{n=1}^{\infty} 2 \frac{(-1)^{n+1}}{n^2} \quad (|error|) < 0.0798$$

a.
$$n = 6$$

b.
$$n = 5$$

c.
$$n = 12$$

d.
$$n = 8$$

e.
$$n = 13$$

9. Find an approximation of the sum of the series accurate to two decimal places.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$

- 10. Determine which series is convergent.
- 11. Find the values of p for which the series is convergent. Select the correct answer.

$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^n}{\left(\ln\left(n^6\right)\right)^p}$$

a.
$$p > 1$$

b.
$$p > 0$$

c.
$$p < 0$$

d.
$$p < 1$$

12. Find the radius of convergence and the interval of convergence of the power series.

$$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdot \dots \cdot 3n}{4 \cdot 7 \cdot 10 \cdot \dots \cdot (3n+1)} x^{2n+1}$$

13. Find the interval of convergence of the series.

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+3}$$

14. Find the radius of convergence of the series.

$$\sum_{n=1}^{\infty} \frac{n^3 x^n}{2^n}$$

15. Find the radius of convergence of the series. Select the correct answer.

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+10)^n}{n 6^n}$$

d.
$$[-16, -4)$$

e.
$$[-1, 1]$$

16. Find a power series representation for the function.

$$f(y) = \ln\left(\frac{11+y}{11-y}\right)$$

17. Find a power series representation for

$$f(t) = \ln(14 - t)$$

18. Find the Maclaurin series for f(x) using the definition of the Maclaurin series.

$$f(x) = x \cos(4x)$$

- 19. For which positive integers k is the series $\sum_{n=1}^{\infty} \frac{(n!)^5}{(kn)!}$ convergent?
- 20. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n \arctan n}{n^4}$$

Select the correct answer.

- a. conditionally convergent
- b. absolutely convergent
- c. divergent

Answer Key

- 1. A
- 2. €
- 3. Diverges
- 4. D
- 5. Diverges
- 6. Diverges
- $7. \quad \sum_{n=1}^{\infty} \frac{1}{n^6}$
- 8. A
- 9. -0.90
- 10. $\frac{4}{3} \frac{4}{4} + \frac{4}{5} \frac{4}{6} + \frac{4}{7} \dots$
- 11. B
- 12. R = 1, I = (-1, 1)
- 13. (-1,1]
- 14. R = 2
- 15. D

16.
$$\sum_{n=0}^{\infty} \frac{2y^{2n+1}}{11^{n+1}(2n+1)}$$

17.
$$\ln 14 - \sum_{n=1}^{\infty} \frac{t^n}{n \cdot 14^n}$$

18.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n+1}}{(2n)!}$$

- 19. $k \ge 5$
- 20. B

1. Find the value of the limit for the sequence given. Select the correct answer.

$$\left\{\frac{1\cdot 9\cdot 17\cdots (7n+1)}{(7n)^2}\right\}$$

- a. 0
- b. -1
- c. π
- d. 3
- e. 1
- 2. If \$600 is invested at 4% interest, compounded annually, then after *n* years the investment is worth $a_n = 600(1.04)^n$ dollars. Find the size of investment after 7 years.
- 3. Determine whether the given series converges or diverges. If it converges, find its sum.

$$\sum_{n=1}^{\infty} \left(1 + \frac{5}{n}\right)^n$$

4. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} 5^n 6^{-n+1}$$

- 5. A rubber ball is dropped from a height of 8 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels. Select the correct answer.
 - a. 16
 - b. 24
 - c. 8
 - d. 32
- 6. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$-\frac{1}{5} + \frac{1}{25} - \frac{1}{125} + \frac{1}{625} - \cdots$$

7. Determine whether the given series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} \frac{9n^2 + 3}{2n^2 + 5}$$

a.
$$u > 7$$

b.
$$6 < u < \frac{7}{e}$$

c.
$$0 < u < \frac{1}{e}$$

d.
$$u < 6$$

e.
$$u > \ln 7$$

9. Find all values of p for which the series
$$\sum_{n=1}^{\infty} \frac{\ln(n^9)}{n^p}$$
 converges.

10. Test the series for convergence or divergence.

$$\sum_{m=1}^{\infty} \frac{(-6)^{m+1}}{4^{8m}}$$

11. Find an approximation of the sum of the series accurate to two decimal places.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$

12. Approximate the sum to the indicated accuracy.

$$\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^7}$$
 (five decimal places)

____ 13. Find the radius of convergence and the interval of convergence of the power series.] Select the correct answer.

$$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdot \dots \cdot 3n}{4 \cdot 7 \cdot 10 \cdot \dots \cdot (3n+1)} x^{2n+1}$$

a.
$$R = \infty$$
, $I = (-\infty, \infty)$

b.
$$R = 1, I = (-1, 1)$$

c.
$$R = 0$$
, $I = \{0\}$

d.
$$R = 1, I = [-1, 1]$$

14. Find the radius of convergence and the interval of convergence of the power series.

$$\sum_{n=0}^{\infty} \left(\frac{nx}{6} \right)^n$$

15. Find the interval of convergence of the series. Select the correct answer.

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+3}$$

a.
$$[-1, 1]$$

b.
$$(-1,1)$$

c.
$$(-1,1]$$

d. diverges everywhere

e.
$$[-1, 1)$$

16. Find the radius of convergence of the series.

$$\sum_{n=1}^{\infty} \frac{n^3 x^n}{2^n}$$

17. Find a power series representation for the function.

$$f(y) = \ln\left(\frac{11+y}{11-y}\right)$$

_____ 18. Use the power series for $f(x) = \sqrt[3]{5+x}$ to estimate $\sqrt[3]{5.07}$ correct to four decimal places.

Select the correct answer.

- a. 1.7179
- b. 1.7189
- c. 1.7195
- d. 1.7156
- e. 1.7200
- 19. Given the series $\sum_{m=1}^{\infty} \frac{3m}{4^m(3m+5)}$ estimate the error in using the partial sum s_8 by comparison with the series $\sum_{m=0}^{\infty} \frac{1}{4^m}$.

20. Evaluate the function $f(x) = \cos x$ by a Taylor polynomial of degree 4 centered at a = 0, and $x = \frac{\pi}{4}$.

Select the correct answer.

- a. 0.7074
- b. 4.2074
- c. 3.2074
- d. 2.2074
- e. 1.2074

Answer Key

- 1. A
- 2. \$789.56
- 3. Diverges
- 4. 36
- 5. B
- 6. $-\frac{1}{6}$
- 7. Diverges
- 8. C
- 9. p > 1
- 10. The series is convergent.
- 11. -0.90
- 12. 3.97036
- 13. B
- 14. $R = 0, I = \{0\}$
- 15. C
- 16. R = 2

17.
$$\sum_{n=0}^{\infty} \frac{2y^{2n+1}}{11^{n+1}(2n+1)}$$

- 18. A
- 19. $R_8 \le 0.0000051$
- 20. A