1. Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.
$\left\{-\frac{1}{2}, \frac{16}{3},-\frac{81}{4}, \frac{256}{5},-\frac{625}{6}, \ldots\right\}$
2. Find the partial sum S_{7} of the series $\sum_{m=1}^{\infty} \frac{6}{10+8^{m}}$. Give your answer to five decimal places.
3. How many terms of the series $\sum_{m=2}^{\infty} \frac{12}{6 m(\ln m)^{2}}$ would you need to add to find its sum to within 0.02 ?
4. Test the series for convergence or divergence.
$\sum_{k=5}^{\infty} \frac{5}{k(\ln k)^{7}}$
5. Use the sum of the first 10 terms to approximate the sum of the series. Estimate the error.
$\sum_{n=1}^{\infty} \frac{1}{1+4^{n}}$
6. Test the series for convergence or divergence.
$\sum_{n=2}^{\infty}(-1)^{n} \frac{n}{5 \ln n}$
7. Test the series for convergence or divergence.
$\sum_{m-1}^{\infty}(-4)^{m} \frac{\ln m}{\sqrt{m}}$
8. Use the binomial series to expand the function as a power series. Find the radius of convergence.

$$
\frac{1}{(4+x)^{5}}
$$

9. Find the sum of the series.
$\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n} n!}$
10. Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of x for which the given approximation is accurate to within the stated error.
$\left.\cos x \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{24} \quad \right\rvert\,$ error $\mid<0.08$

Write a such that $-a<x<a$.
11. Write the first five terms of the sequence $\left\{a_{n}\right\}$ whose $n^{\text {th }}$ term is given.
$a_{n}=\frac{n+7}{6 n-1}$
12. Find an expression for the $n^{\text {th }}$ term of the sequence. (Assume that the pattern continues.)

$$
\left\{\frac{2}{25}, \frac{4}{36}, \frac{6}{49}, \frac{8}{64}, \frac{10}{81}, \cdots\right\}
$$

13. Determine whether the given series converges or diverges. If it converges, find its sum.
$\sum_{n=0}^{\infty} \frac{9^{n}+8^{n}}{12^{n}}$
14. Determine whether the given series is convergent or divergent.
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
15. Determine whether the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2^{n}}
$$

16. Test the series for convergence or divergence.

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{5}+8}}
$$

17. Determine whether the series converges or diverges.

$$
\sum_{n-1}^{\infty} \frac{(-1)^{n}}{n+4}
$$

18. Determine whether the series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{(n!)^{4}}{(7 n)!}
$$

19. Determine whether the series is convergent or divergent.
$\sum_{n=1}^{\infty} \frac{9^{n}}{n!n}$
20. Determine whether the series is convergent or divergent.

$$
\sum_{n=1}^{\infty}\left(\frac{\ln \left(n^{6}\right)}{n}\right)^{n}
$$

Answer Key

1. $a_{n}=\frac{(-1)^{n} n^{4}}{n+1}$
2. 0.42758
3. $m>e^{100}$
4. convergent
5. 0.27940 , error <0.0000007
6. divergent
7. divergent
8. $|x|<4$
9. $e^{2 / 3}$
10. $-1.965<x<1.965$
11. $\frac{8}{5}, \frac{9}{11}, \frac{10}{17}, \frac{11}{23}, \frac{12}{29}$
12. $a_{n}=\frac{2 n}{(n+4)^{2}}$
13. 7
14. Convergent
15. Converges
16. Convergent
17. Converges
18. converges
19. convergent
20. convergent
21. Determine whether the sequence converges or diverges. If it converges, find the limit.

$$
a_{n}=2 e^{4 n /(x+2)}
$$

2. Find the exact value of the limit of the sequence defined by $a_{1}=\sqrt{4}, a_{n+1}=\sqrt{4+a_{n}}$.
3. The terms of a series are defined recursively by the equations $a_{1}=6, a_{n+1}=\frac{7 n+1}{6 n+3} a_{n}$.

Determine whether $\sum a_{n}$ converges or diverges.
4. Express the number $0 . \overline{81}$ as a ratio of integers.
5. Use the Integral Test to determine whether the series is convergent or divergent.
$\sum_{n=1}^{\infty} \frac{1}{8 n+2}$
6. How many terms of the series $\sum_{m-2}^{\infty} \frac{12}{6 m(\ln m)^{2}}$ would you need to add to find its sum to within 0.02 ?
7. Test the series for convergence or divergence.

$$
\sum_{k-5}^{\infty} \frac{5}{k(\ln k)^{7}}
$$

8. Determine whether the sequence convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}-6 n+10}
$$

9. Test the series for convergence or divergence.

$$
\sum_{k=1}^{\infty} \frac{(-6)^{k+1}}{7^{2 k}}
$$

10. Test the series for convergence or divergence.

$$
\sum_{m=1}^{\infty} \frac{4^{m} m^{3}}{m!}
$$

11. Find a power series representation for the function and determine the radius of convergence.

$$
f(x)=\arctan \left(\frac{x}{3}\right)
$$

12. Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin serires.
$f(x)=(3+x)^{-3}$
13. Use the binomial series to expand the function as a power series. Find the radius of convergence.
$\sqrt[4]{1+x^{6}}$
14. Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of x for which the given approximation is accurate to within the stated error.
$\left.\cos x \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{24} \quad \right\rvert\,$ error $\mid<0.08$
Write a such that $-a<x<a$.
15. Use the sum of the first 9 terms to approximate the sum of the following series.
$\sum_{n=1}^{\infty} \frac{6}{n^{7}+n^{2}}$
Write your answer to six decimal places.
16. Determine whether the series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n \sqrt{n+7}}
$$

17. Determine whether the series converges or diverges.
$\sum_{n=1}^{\infty}(-1)^{n} n \sin \left(\frac{\pi}{9_{n}}\right)$
18. Determine whether the series is convergent or divergent.
$\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n \sqrt{n+6}}$
19. Determine whether the series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{(n!)^{4}}{(7 n)!}
$$

20. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[6]{n}}
$$

Answer Key

1. $2 e^{4}$
2. $\frac{1+\sqrt{17}}{2}$
3. diverges
4. $\frac{9}{11}$
5. divergent
6. $m>e^{100}$
7. convergent
8. converges
9. convergent
10. convergent
11. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{x}{3}\right)^{2 n+1}}{2 n+1} ; R=3$
12. $\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)(n+2)\left(\frac{x}{3}\right)^{n}}{54}$
13. $|x|<1$
14. $-1.965<x<1.965$
15. 3.048662
16. Convergent
17. Diverges
18. Convergent
19. converges
20. conditionally convergent

Select the correct answer for each question.

1. Determine whether the sequence defined by $a_{n}=\frac{n^{2}-5}{6 n^{2}+1}$ converges or diverges. If it converges, find its limit.
a. $\frac{1}{6}$
b. -5
c. $-\frac{5}{6}$
d. Diverges
2. Determine whether the sequence defined by $a_{n}=\frac{5^{n}}{8^{n}+1}$ converges or diverges. If it converges, find its limit.
a. 1
b. $\frac{5}{8}$
c. 0
d. Diverges
3. Find the value of the limit for the sequence given.
$\left\{\frac{1 \cdot 9 \cdot 17 \cdots(7 n+1)}{(7 n)^{2}}\right\}$
a. 0
b. -1
c. π
d. 3
e. 1
4. If $\$ 600$ is invested at 4% interest, compounded annually, then after n years the investment is worth $a_{n}=600(1.04)^{n}$ dollars. Find the size of investment after 7 years.
a. $\$ 430.21$
b. $\$ 1,860.81$
c. $\$ 1,230.81$
d. $\$ 789.56$
e. $\$ 1,321.06$
5. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$
\sum_{n=0}^{\infty} 5^{n} 6^{-n+1}
$$

a. 30
b. 36
c. 5
d. Diverges
6. A sequenceis $\left\{a_{n}\right\}$ defined recursively by the equation $a_{n}=0.5\left(a_{n-1}+a_{n-2}\right)$ for $n \geq 3$ where $a_{1}=14, a_{2}=14$.

Use your calculator to guess the limit of the sequence.
a. 6
b. 14
c. 26
d. 17
e. 15
7. Determine whether the geometric series converges or diverges. If it converges, find its sum.
$-\frac{1}{5}+\frac{1}{25}-\frac{1}{125}+\frac{1}{625}-\cdots$
a. $\frac{1}{4}$
b. $-\frac{1}{5}$
c. Diverges
d. $-\frac{1}{6}$
8. Find all positive values of u for which the series $\sum_{m=1}^{\infty} 6 u^{m, 7_{m}}$ converges.
a. $u>7$
b. $6<u<\frac{7}{e}$
c. $0<u<\frac{1}{e}$
d. $u<6$
e. $u>\ln 7$
9. Determine which one of the p-series below is divergent.
a. $\sum_{n=1}^{\infty} \frac{1}{n^{03}}$
b. $\sum_{n=1}^{\infty} n^{-4}$
c. $\sum_{n=1}^{\infty} \frac{1}{n^{3 e}}$
d. $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$
\qquad 10. Find an approximation of the sum of the series accurate to two decimal places.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}
$$

a. -1.06
b. -0.84
c. -0.90
d. -0.98
11. Approximate the sum to the indicated accuracy.
$\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^{7}}$ (five decimal places)
a. 6.97036
b. 4.97036
c. 7.97036
d. 3.97036
e. 5.97036
12. Find the radius of convergence and the interval of convergence of the power series.

$$
\sum_{n=0}^{\infty} \frac{(7 x)^{n}}{n!}
$$

a. $R=7, I=(-7,7)$
b. $R=0, I=\{0\}$
c. $R=7, I=[-7,7]$
d. $R=\infty, I=(-\infty, \infty)$
13. Find the radius of convergence and the interval of convergence of the power series.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-8)^{n}}{\sqrt{n}}$
a. $R=1, I=[7,9)$
b. $R=1, I=(7,9]$
c. $R=8, I=[-8,8)$
d. $R=8, l=(-8,8)$
14. Find the interval of convergence of the series.
$\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n+3}$
a. $[-1,1]$
b. $(-1,1)$
c. $(-1,1]$
d. diverges everywhere
e. $[-1,1$)
15. Find a power series representation for
$f(t)=\ln (14-i)$
a. $\ln 14-\sum_{n=1}^{\infty} \frac{t^{n}}{14^{n}}$
b. $\ln 14-\sum_{n=1}^{\infty} \frac{t^{n}}{n 14^{n}}$
C. $\sum_{n=0}^{\infty} \frac{t^{n}}{n 14^{n}}$
d. $\sum_{n=1}^{\infty} \frac{14 t^{n}}{n^{n}}$
e. $\ln 14+\sum_{n=1}^{\infty} \frac{t^{2 n}}{14^{n}}$
16. Use the power series for $f(x)=\sqrt[3]{5+x}$ to estimate $\sqrt[3]{5.07}$ correct to four decimal places.
a. 1.7179
b. 1.7189
c. 1.7195
d. 1.7156
e. 1.7200
17. Use series to approximate the definite integral to within the indicated accuracy.
$\int_{0}^{0.5} x^{2} e^{-x^{2}} d x \quad \mid$ error $\mid<0.001$
a. 0.0354
b. 0.0125
c. 0.0625
d. 0.1447
e. 0.2774
18. Use series to evaluate the limit correct to three decimal places.
$\lim _{x \rightarrow 0} \frac{7 x-\tan ^{-1} 7 x}{x^{3}}$
Select the correct answer.
a. 118.933
b. 114.133
c. 34.3233
d. 114.333
e. 115.933
19. For which positive integers k is the series $\sum_{n=1}^{\infty} \frac{(n!)^{5}}{(k n)!}$ convergent?
a. $k \geq 5$
b. $k \leq 0$
c. $k \geq 0$
d. $k \geq 1$
e. $k \leq-5$
20. Which of the given series are absolutely convergent?
a. $\sum_{n=1}^{\infty} \frac{\sin 2 n}{n}$
b.
$\sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{7}}{n \sqrt{n}}$

Answer Key

1. A
2. C
3. A
4. D
5. B
6. B
7. D
8. C
9. A
10. C
11. D
12. D
13. B
14. C
15. B
16. A
17. A
18. D
19. A
20. B

Stewart - Calculus ET 8e Chapter 11 Form D

Select the correct answer for each question.

1. Find the value of the limit for the sequence given.
$\left\{\frac{1 \cdot 9 \cdot 17 \cdots(7 n+1)}{(7 n)^{2}}\right\}$
a. 0
b. -1
c. π
d. 3
e. 1
2. Determine whether the sequence defined by $a_{n}=5+8(-1)^{n}$ converges or diverges. If it converges, find its limit.
a. 13
b. 5
c. Diverges
d. -3
3. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$
\sum_{n=0}^{\infty} 3^{n} 4^{-n+1}
$$

a. 12
b. Diverges
c. 3
d. 16
4. Determine whether the geometric series converges or diverges. If it converges, find its sum. $\sum_{n=0}^{\infty} 5^{n} 6^{-n+1}$
a. 30
b. 36
c. 5
d. Diverges
5. A rubber ball is dropped from a height of 8 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels.
a. 16
b. 24
c. 8
d. 32
6. A sequenceis $\left\{a_{n}\right\}$ defined recursively by the equation $a_{n}=0.5\left(a_{n-1}+a_{n-2}\right)$ for $n \geq 3$ where $a_{1}=14, a_{2}=14$.

Use your calculator to guess the limit of the sequence.
a. 6
b. 14
c. 26
d. 17
e. 15
7. Find the sum of the series.
$\frac{2}{1 \cdot 3}-\frac{2^{2}}{2 \cdot 3^{2}}+\frac{2^{3}}{3 \cdot 3^{3}}-\frac{2^{4}}{4 \cdot 3^{4}}+$.
a. $\ln \left(\frac{4}{3}\right)$
b. $\frac{5 e}{3}$
c. $\ln \left(\frac{5}{3}\right)$
d. $\ln \left(\frac{1}{3}\right)$
e. $e^{5 / 3}$
8. Find all positive values of u for which the series $\sum_{m=1}^{\infty} 6 u^{\mathrm{m}^{7 \% m}}$ converges.
a. $u>7$
b. $6<u<\frac{7}{e}$
c. $0<u<\frac{1}{e}$
d. $u<6$
e. $u>\ln 7$
9. Find all values of p for which the series $\sum_{n=1}^{\infty} \frac{\ln \left(n^{9}\right)}{n^{F}}$ converges.
a. $p<9$
b. $p<1$
c. $p>9$
d. $p>1$
10. Determine whether the sequence convergent or divergent.
$\sum_{n=1}^{\infty} \frac{3}{n^{2}+3}$
a. converges
b. diverges
\qquad 11. Test the series for convergence or divergence.

$$
\sum_{m=1}^{\infty} \frac{(-6)^{m+1}}{4^{8 m}}
$$

a. The series is convergent.
b. The series is divergent.
12. Determine which series is convergent.
a. $-\frac{2}{7}+\frac{3}{8}-\frac{4}{9}+\frac{5}{10}-\frac{6}{11}-\ldots$
b. $\frac{4}{3}-\frac{4}{4}+\frac{4}{5}-\frac{4}{6}+\frac{4}{7}-\ldots$
13. Find the values of p for which the series is convergent.
$\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\left(\ln \left(n^{6}\right)\right)^{3}}$
a. $p>1$
b. $p>0$
c. $p<0$
d. $p<1$
14. Find the radius of convergence and the interval of convergence of the power series.
$\sum_{n=0}^{\infty} \frac{(7 x)^{n}}{n!}$
a. $R=7, I=(-7,7)$
b. $R=0, I=\{0\}$
c. $R=7, I=[-7,7]$
d. $R=\infty, I=(-\infty, \infty)$
_ 15. Suppose that the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 9 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n}$.
a. 252
b. 3
c. 1
d. 256
e. 16
16. Find the radius of convergence and the interval of convergence of the power series.
$\sum_{n=0}^{\infty}\left(\frac{n x}{6}\right)^{n}$
a. $R=0, I=\{0\}$
b. $R=\infty, I=(-\infty, \infty)$
c. $R=6, I=[-6,6]$
d. $R=6, I=(-6,6)$
17. Find the Maclaurin series for $f(x)$ using the definition of the Maclaurin series.
$f(x)=x \cos (4 x)$
a. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2 n+1}}{(2 n)!}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{n!}$
c. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n}}{(2 n)!}$
d. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{(2 n)!}$
e. $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{2 n} x^{2 n+1}}{(2 n)!}$
18. Use multiplication or division of power series to find the first three nonzero terms in the Maclaurin series for the function.
$f(x)=5 e^{-x^{2}} \cos 4 x$
a. $5\left(1-17 x^{2}+\frac{115}{6} x^{4}\right)$
b. $5\left(1-9 x^{2}+\frac{115}{6} x^{4}\right)$
c. $5\left(1-9 x+\frac{115}{6} x^{4}\right)$
d. $5\left(1-9 x^{2}+\frac{97}{6} x^{4}\right)$
e. $5\left(1-17 x^{2}+\frac{67}{6} x^{4}\right)$
19. Given the series $\sum_{m=1}^{\infty} \frac{3 m}{4^{m}(3 m+5)}$ estimate the error in using the partial sum s_{8} by comparison with the series $\sum_{m-9}^{\infty} \frac{1}{4^{m}}$.
a. $R_{g} \leq 2.6130051$
b. $R_{8} \geq 0.0000052$
c. $R_{g} \leq 0.0000051$
d. $R_{8} \geq 0.0000051$
e. $R_{8} \leq 0.000005$
20. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
$\sum_{n=1}^{\infty} \frac{(-1)^{n} \arctan n}{n^{4}}$
a. conditionally convergent
b. absolutely convergent
c. divergent

Answer Key

1. A
2. C
3. D
4. B
5. B
6. B
7. C
8. C
9. D
10. A
11. A
12. B
13. B
14. D
15. B
16. A
17. D
18. B
19. C
20. B
21. Determine whether the sequence defined by $a_{n}=\frac{n^{2}-5}{6 n^{2}+1}$ converges or diverges. If it converges, find its limit.
22. Determine whether the sequence defined by $a_{n}=5+8(-1)^{n}$ converges or diverges. If it converges, find its limit. Select the correct answer.
a. 13
b. 5
c. Diverges
d. -3
23. Determine whether the sequence defined by $a_{n}=\frac{\sin 2 n}{9 n}$ converges or diverges. If it converges, find its limit.
24. Determine whether the series is convergent or divergent by expressing S_{k} as a telescoping sum. If it is convergent, find its sum.

$$
\sum_{n=2}^{\infty} \frac{5}{n\left(n^{2}-1\right)}
$$

5. Determine whether the geometric series converges or diverges. If it converges, find its sum.

$$
\sum_{n=0}^{\infty} 5^{n} 6^{-n+1}
$$

6. A sequenceis $\left\{a_{n}\right\}$ defined recursively by the equation $a_{n}=0.5\left(a_{n-1}+a_{n-2}\right)$ for $n \geq 3$ where $a_{1}=14, a_{2}=14$.

Use your calculator to guess the limit of the sequence. Select the correct answer.
a. 6
b. 14
c. 26
d. 17
e. 15
7. Determine which one of the p-series below is convergent.
8. Determine which one of the p-series below is divergent.
© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
9. Let $a_{k}=f(k)$, where f is a continuous, positive, and decreasing function on $[n, \infty)$, and suppose that $\sum_{k=1}^{\infty} a_{k}$ is convergent. Defining $R_{n}=S-S_{k}$, where $S=\sum_{n=1}^{\infty} a_{n}$ and $S_{n}=\sum_{k=1}^{n} a_{k}$, we have that $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$. Find the maximum error if the sum of the series $\sum_{n=1}^{\infty} \frac{3}{n^{2}}$ is approximated by S_{40}
10. Test the series for convergence or divergence. Select the correct answer.

$$
\sum_{m=1}^{\infty} \frac{(-6)^{m+1}}{4^{8 m}}
$$

a. The series is convergent.
b. The series is divergent.
11. Approximate the sum to the indicated accuracy.

$$
\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^{7}} \text { (five decimal places) }
$$

12. Find the radius of convergence and the interval of convergence of the power series.

$$
\sum_{n=0}^{\infty} \frac{(7 x)^{n}}{n!}
$$

13. Find the radius of convergence and the interval of convergence of the power series.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-8)^{n}}{\sqrt{n}}
$$

14. Find the radius of convergence and the interval of convergence of the power series. Select the correct answer.
$\sum_{n=2}^{\infty} \frac{n^{n}}{n(\ln n)^{8}}$
a. $R=0, I=\{0\}$
b. $R=1, I=[-1,1]$
c. $R=1, I=(-1,1)$
d. $R=\infty, l=(-\infty, \infty)$
15. Use the power series for $f(x)=\sqrt[3]{5+x}$ to estimate $\sqrt[3]{5.07}$ correct to four decimal places.
16. Use series to evaluate the limit correct to three decimal places.
$\lim _{x \rightarrow 0} \frac{7 x-\tan ^{-1} 7 x}{x^{3}}$
Select the correct answer.
17. Use the binomial series to expand the function as a power series. Find the radius of convergence. $\frac{\pi}{\sqrt{16+x^{2}}}$
18. Given the series $\sum_{m=1}^{\infty} \frac{3 m}{4^{m}(3 m+5)}$ estimate the error in using the partial sum s_{8} by comparison with the series $\sum_{m=9}^{\infty} \frac{1}{4^{m}}$.
19. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Select the correct answer.
$\sum_{n=1}^{\infty}\left(\frac{4 n^{2}+3}{3 n^{2}+4}\right)^{n}$
a. conditionally convergent
b. absolutely convergent
c. divergent

[^0]20. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
$\sum_{n=1}^{\infty} \frac{(-1)^{n} \arctan n}{n^{4}}$

Answer Key

1. $\frac{1}{6}$
2. C
3. 0
4. $\frac{5}{4}$
5. 36
6. B
7. $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$
8. $\sum_{n=1}^{\infty} \frac{1}{n^{03}}$
9. 0.075
10. A
11. 397036
12. $R=\infty, I=(-\infty, \infty)$
13. $R=1, I=(7,9]$
14. B
15. 1.7179
16. 114.333
17. $|x|<4$
18. $R_{8} \leq 0.0000051$
19. C
20. absolutely convergent

Stewart - Calculus ET 8e Chapter 11 Form F

- 1. Determine whether the sequence defined by $a_{n}=\frac{n^{2}-5}{6 n^{2}+1}$ converges or diverges. If it converges, find its limit. Select the correct answer.
a. $\frac{1}{6}$
b. -5
c. $-\frac{5}{6}$
d. Diverges

2. Determine whether the sequence converges or diverges. If it converges, find the limit. $a_{n}=e^{n /(x+6)}$
3. Find the value of the limit for the sequence given. Select the correct answer.
$\left\{\frac{1 \cdot 9 \cdot 17 \cdots(7 n+1)}{(7 n)^{2}}\right\}$
a. 0
b. -1
c. π
d. 3
e. 1
4. If $\$ 600$ is invested at 4% interest, compounded annually, then after n years the investment is worth $a_{n}=600(1.04)^{n}$ dollars. Find the size of investment after 7 years.
5. A sequenceis $\left\{a_{n}\right\}$ defined recursively by the equation $a_{n}=0.5\left(a_{n-1}+a_{n-2}\right)$ for $n \geq 3$ where $a_{1}=14, a_{2}=14$.

Use your calculator to guess the limit of the sequence.
6. Determine whether the geometric series converges or diverges. If it converges, find its sum.
$-\frac{1}{5}+\frac{1}{25}-\frac{1}{125}+\frac{1}{625}-\cdots$
© 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
7. When money is spent on goods and services, those that receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the multiplier effect. In a hypothetical isolated community, the local government begins the process by spending D dollars. Suppose that each recipient of spent money spends $100 c \%$ and saves $100 s \%$ of the money that he or she receives. The values c and s are called the marginal propensity to consume and the marginal propensity to save and, of course, $c+s=1$.

The number $k=1 / s$ is called the multiplier. What is the multiplier if the marginal propensity to consume is 90% ?

Select the correct answer.
a. 4
b. 3
c. 6
d. 7
e. 10
8. Find the sum of the series.
$\frac{2}{1 \cdot 3}-\frac{2^{2}}{2 \cdot 3^{2}}+\frac{2^{3}}{3 \cdot 3^{3}}-\frac{2^{4}}{4 \cdot 3^{4}}+\ldots$
9. Find an approximation of the sum of the series accurate to two decimal places.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$
10. Determine which series is convergent. Select the correct answer.
a. $-\frac{2}{7}+\frac{3}{8}-\frac{4}{9}+\frac{5}{10}-\frac{6}{11}-\ldots$
b. $\frac{4}{3}-\frac{4}{4}+\frac{4}{5}-\frac{4}{6}+\frac{4}{7}-\ldots$
11. Approximate the sum to the indicated accuracy.
$\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^{7}}$ (five decimal places)
12. Find the radius of convergence and the interval of convergence of the power series.

$$
\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{8}}
$$

13. Find the radius of convergence and the interval of convergence of the power series. $\$ Select the correct answer.
$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdot \cdots \cdot 3 n}{4 \cdot 7 \cdot 10 \cdot \cdots \cdot(3 n+1)} x^{2 n+1}$
a. $R=\infty, l=(-\infty, \infty)$
b. $R=1, I=(-1,1)$
c. $R=0, I=\{0\}$
d. $R=1, I=[-1,1]$
14. Suppose that the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 9 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n}$.
15. Find the radius of convergence and the interval of convergence of the power series.

$$
\sum_{n-0}^{\infty} \frac{x^{n}}{n+2}
$$

16. Find the radius of convergence of the series. Select the correct answer.

$$
\sum_{n-1}^{\infty}(-1)^{n} \frac{(x+10)^{n}}{n 6^{n}}
$$

a. $(-8,6]$
b. $(2,14]$
c. $(-14,-2)$
d. $[-16,-4)$
e. $[-1,1]$
17. Use series to evaluate the limit correct to three decimal places.
$\lim _{x \rightarrow 0} \frac{7 x-\tan ^{-1} 7 x}{x^{3}}$
Select the correct answer.
18. Given the series $\sum_{m=1}^{\infty} \frac{3 m}{4^{m}(3 m+5)}$ estimate the error in using the partial sum s_{8} by comparison with the series $\sum_{w-9}^{\infty} \frac{1}{4^{m}}$.
19. For which positive integers k is the series $\sum_{n=1}^{\infty} \frac{(n!)^{5}}{(k n)!}$ convergent? Select the correct answer.
a. $k \geq 5$
b. $k \leq 0$
c. $k \geq 0$
d. $k \geq 1$
e. $k \leq-5$
20. Which of the given series are absolutely convergent? Select the correct answer.
a. $\sum_{n=1}^{\infty} \frac{\sin 2 n}{n}$
b.
$\sum_{n=1}^{\infty} \frac{\cos \frac{\pi n}{7}}{n \sqrt{n}}$

Answer Key

1. A
2. e
3. A
4. $\$ 789.56$
5. 14
6. $-\frac{1}{6}$
7. E
8. $\ln \left(\frac{5}{3}\right)$
9. -0.90
10. B
11. 397036
12. $R=1, I=[-1,1]$
13. B
14. 3
15. $R=1, I=[-1,1)$
16. D
17. 114.333
18. $R_{8} \leq 0.0000051$
19. A
20. B
21. Find the value of the limit of the sequence defined by
$a_{1}=1, a_{n+1}=6-\frac{1}{a_{n}}$.
Select the correct answer.
a. $\frac{6+\sqrt{5}}{2}$
b. $\frac{6-\sqrt{10}}{2}$
c. $\frac{6+\sqrt{10}}{2}$
d. $\frac{6-\sqrt{5}}{2}$
e. $6+\sqrt{10}$
22. Determine whether the sequence converges or diverges. If it converges, find the limit.

$$
a_{n}=e^{3 /(x+6)}
$$

3. Determine whether the sequence defined by $a_{n}=5+8(-1)^{n}$ converges or diverges. If it converges, find its limit.
4. Determine whether the geometric series converges or diverges. If it converges, find its sum.
$\sum_{n=0}^{\infty} 3^{n} 4^{-n+1}$

Select the correct answer.
a. 12
b. Diverges
c. 3
d. 16
5. Determine whether the given series converges or diverges. If it converges, find its sum.
$\sum_{n=1}^{\infty}\left(1+\frac{5}{n}\right)^{n}$
6. Determine whether the given series converges or diverges. If it converges, find its sum.

$$
\sum_{n=0}^{\infty} \frac{9 n^{2}+3}{2 n^{2}+5}
$$

7. Determine which one of the p-series below is convergent.
8. How many terms of the series do we need to add in order to find the sum to the indicated accuracy? Select the correct answer.
$\sum_{n=1}^{\infty} 2 \frac{(-1)^{n+1}}{n^{2}}(\mid$ error| $)<0.0798$
a. $n=6$
b. $n=5$
c. $n=12$
d. $n=8$
e. $n=13$
9. Find an approximation of the sum of the series accurate to two decimal places.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}
$$

10. Determine which series is convergent.
11. Find the values of p for which the series is convergent. Select the correct answer.

$$
\sum_{n-2}^{\infty} \frac{(-1)^{n}}{\left(\ln \left(n^{6}\right)\right)^{x}}
$$

a. $p>1$
b. $p>0$
c. $p<0$
d. $p<1$
12. Find the radius of convergence and the interval of convergence of the power series.
$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdot \cdots \cdot 3 n}{4 \cdot 7 \cdot 10 \cdot \cdots \cdot(3 n+1)} x^{2 n+1}$
13. Find the interval of convergence of the series.
$\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n+3}$
14. Find the radius of convergence of the series.

$$
\sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{2^{n}}
$$

15. Find the radius of convergence of the series. Select the correct answer.
$\sum_{n=1}^{\infty}(-1)^{n} \frac{(x+10)^{n}}{n 6^{n}}$
a. $(-8,6]$
b. $(2,14]$
c. $(-14,-2)$
d. $[-16,-4)$
e. $[-1,1]$
16. Find a power series representation for the function.
$f(y)=\ln \left(\frac{11+y}{11-y}\right)$
17. Find a power series representation for
$f(t)=\ln (14-t)$
18. Find the Maclaurin series for $f(x)$ using the definition of the Maclaurin series.
$f(x)=x \cos (4 x)$
19. For which positive integers k is the series $\sum_{n=1}^{\infty} \frac{(n!)^{5}}{(k n)!}$ convergent?
20. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
$\sum_{n-1}^{\infty} \frac{(-1)^{n} \arctan n}{n^{4}}$

Select the correct answer.
a. conditionally convergent
b. absolutely convergent
c. divergent

Answer Key

1. A
2. e
3. Diverges
4. D
5. Diverges
6. Diverges
7. $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$
8. A
9. -0.90
10. $\frac{4}{3}-\frac{4}{4}+\frac{4}{5}-\frac{4}{6}+\frac{4}{7}-\ldots$
11. B
12. $R=1, I=(-1,1)$
13. $(-1,1]$
14. $R=2$
15. D
16. $\sum_{n=0}^{\infty} \frac{2 y^{2 n+1}}{11^{n+1}(2 n+1)}$
17. $\ln 14-\sum_{n=1}^{\infty} \frac{t^{n}}{n 14^{n}}$
18. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{(2 n)!}$
19. $k \geq 5$
20. B
21. Find the value of the limit for the sequence given. Select the correct answer.
$\left\{\frac{1 \cdot 9 \cdot 17 \cdots(7 n+1)}{(7 n)^{2}}\right\}$
a. 0
b. -1
c. π
d. 3
e. 1
22. If $\$ 600$ is invested at 4% interest, compounded annually, then after n years the investment is worth $a_{n}=600(1.04)^{n}$ dollars. Find the size of investment after 7 years.
23. Determine whether the given series converges or diverges. If it converges, find its sum.

$$
\sum_{n=1}^{\infty}\left(1+\frac{5}{n}\right)^{n}
$$

4. Determine whether the geometric series converges or diverges. If it converges, find its sum. $\sum_{n=0}^{\infty} 5^{n} 6^{-n+1}$
5. A rubber ball is dropped from a height of 8 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels. Select the correct answer.
a. 16
b. 24
c. 8
d. 32
6. Determine whether the geometric series converges or diverges. If it converges, find its sum.
$-\frac{1}{5}+\frac{1}{25}-\frac{1}{125}+\frac{1}{625}-\cdots$
7. Determine whether the given series converges or diverges. If it converges, find its sum.
$\sum_{n=0}^{\infty} \frac{9 n^{2}+3}{2 n^{2}+5}$
8. Find all positive values of u for which the series $\sum_{m=1}^{\infty} 6 u^{\mathrm{m}_{7 m}}$ converges. Select the correct answer.
a. $u>7$
b. $6<u<\frac{7}{e}$
c. $0<u<\frac{1}{e}$
d. $u<6$
e. $u>\ln 7$
9. Find all values of p for which the series $\sum_{n=1}^{\infty} \frac{\ln \left(n^{9}\right)}{n^{n}}$ converges.
10. Test the series for convergence or divergence.

$$
\sum_{w-1}^{\infty} \frac{(-6)^{m+1}}{4^{8 w}}
$$

11. Find an approximation of the sum of the series accurate to two decimal places.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}
$$

12. Approximate the sum to the indicated accuracy.
$\sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^{7}}$ (five decimal places)
13. Find the radius of convergence and the interval of convergence of the power series.] Select the correct answer.
$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdot \cdots \cdot 3 n}{4 \cdot 7 \cdot 10 \cdot \cdots \cdot(3 n+1)} x^{2 n+1}$
a. $R=\infty, I=(-\infty, \infty)$
b. $R=1, I=(-1,1)$
c. $R=0, I=\{0\}$
d. $R=1, I=[-1,1]$
14. Find the radius of convergence and the interval of convergence of the power series.

$$
\sum_{n=0}^{\infty}\left(\frac{n x}{6}\right)^{n}
$$

15. Find the interval of convergence of the series. Select the correct answer.
$\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n+3}$
a. $[-1,1]$
b. $(-1,1)$
c. $(-1,1]$
d. diverges everywhere
e. $[-1,1$)
16. Find the radius of convergence of the series.
$\sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{2^{n}}$
17. Find a power series representation for the function.
$f(y)=\ln \left(\frac{11+y}{11-y}\right)$
18. Use the power series for $f(x)=\sqrt[3]{5+x}$ to estimate $\sqrt[3]{5.07}$ correct to four decimal places. Select the correct answer.
a. 1.7179
b. 1.7189
c. 1.7195
d. 1.7156
e. 1.7200
19. Given the series $\sum_{m=1}^{\infty} \frac{3 m}{4^{m}(3 m+5)}$ estimate the error in using the partial sum s_{8} by comparison with the series $\sum_{m-9}^{\infty} \frac{1}{4^{m}}$.
20. Evaluate the function $f(x)=\cos x$ by a Taylor polynomial of degree 4 centered at $a=0$, and $x=\frac{\pi}{4}$.
Select the correct answer.
a. 0.7074
b. 4.2074
c. 32074
d. 2.2074
e. 1.2074

Answer Key

1. A
2. $\$ 789.56$
3. Diverges
4. 36
5. B
6. $-\frac{1}{6}$
7. Diverges
8. C
9. $p>1$
10. The series is convergent.
11. -0.90
12. 3.97036
13. B
14. $R=0, I=\{0\}$
15. C
16. $R=2$
17. $\sum_{n=0}^{\infty} \frac{2 y^{2 n+1}}{11^{n+1}(2 n+1)}$
18. A
19. $R_{8} \leq 0.0000051$
20. A

[^0]: © 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

