1. Award: 10.00 points

Work is defined as

the ability to transform energy from one state to another.the ability to utilize oxygen.
$\rightarrow \bigcirc$ the product of force times distance.the product of distance times power output.

References

Multiple Choice Difficulty: Easy
2. Award: 10.00 points

Power is defined as

O the ability to perform work.
\rightarrow work divided by the amount of time required to perform the work.
The product of work times force (Work \times force).the product of force times distance (force \times distance).

References

The SI unit for work is the
\rightarrow joule.
watt.
人 kpm.
(kcal.

References

```
Multiple Choice Difficulty: Easy
```


4. Award: 10.00 points

Direct calorimetry is a means of determining energy expenditure and involves the measurement of
oxygen consumption.
\rightarrow - heat production.
O
ATP hydrolysis.
carbon dioxide production.

References

Multiple Choice Difficulty: Easy

The energy cost of horizontal running can be estimated accurately because
the VO_{2} of running is always the same.
the VO_{2} of horizontal running is always 1 MET .
$\rightarrow \bigcirc$ the VO_{2} increases linearly with running speed.
none of these answers is correct.

References

```
Multiple Choice Difficulty: Easy
```

6. Award: 10.00 points

The most common technique used to measure oxygen consumption in an exercise physiology laboratory is
closed-circuit spirometry.
\rightarrow open-circuit spirometry.
direct calorimetry.
computer calorimetry.

References

Multiple Choice Difficulty: Easy

One MET is defined as a metabolic equivalent and is equal to
\rightarrow - resting VO_{2}.
50% of resting VO_{2}.
200% of resting VO_{2}.
$\mathrm{VO}_{2} \max$.

References

```
Multiple Choice Difficulty: Easy
```

8. Award: 10.00 points

Net efficiency is defined as
work output/energy expended at rest multiplied by 100.
\rightarrow work output/energy expended above rest multiplied by 100.
work output/energy expended multiplied by 100 .
energy expended/work output multiplied by 100.

References

Multiple Choice Difficulty: Easy

Exercise efficiency is greater in subjects who
possess a higher percentage of fast muscle fibers.
$\rightarrow \bigcirc$ possess a higher percentage of slow muscle fibers.
possess 50% fast fibers and 50% slow fibers.
None of these answers is correct.

References

```
Multiple Choice Difficulty: Easy
```

10. Award: 10.00 points

To achieve the highest efficiency during exercise, the optimum speed of movement
$\rightarrow \bigcirc$ increases as the power output increases.
decreases as the power output increases.remains constant as the power output increases.increases as the power output decreases.

References

Multiple Choice Difficulty: Easy

The SI units used to describe power are

Newtons.joules.
$\rightarrow 0$
watts.
joules per second.

References

```
Multiple Choice Difficulty: Easy
```

12. Award: 10.00 points

Net efficiency \qquad as work rate increases.increases
does not change
$\rightarrow \bigcirc$ decreases
follows a sine wave pattern

References

Multiple Choice Difficulty: Easy

A kilocalorie is equal to

100 calories.
\rightarrow 1,000 calories.4,186 kilojoules.
. 4.186 joules.

References

```
Multiple Choice Difficulty: Easy
```

14. Award: 10.00 points

In order to standardize terms for the measurement of energy, power, work, etc., scientists have developed a common system of terminology called
the English system.
the metric system.
$\rightarrow \bigcirc$ system international units (SI).
None of these answers is correct.

References

```
Multiple Choice Difficulty: Easy
```

The incline of a treadmill is expressed in units called percent grade. Percent grade is defined asthe angle of the treadmill expressed in degrees.the amount of horizontal travel of the treadmill belt per minute.the hypotenuse divided by the vertical rise.
$\rightarrow \bigcirc$ the vertical rise per 100 units of belt travel.

References

```
Multiple Choice Difficulty: Easy
```

16. Award: 10.00 points

The term ergometry refers to
the measurement of heat production.
$\rightarrow \bigcirc$ the measurement of work output.
the hypotenuse divided by the vertical rise.
O the vertical rise per 100 units of belt travel.

References

Multiple Choice Difficulty: Easy

Calculating the work performed on a cycle ergometer requires that you know all of the following except
\rightarrow 〇ubject's body weight.resistance against flywheel.pedaling speed (i.e., distance traveled).
duration of exercise.

References

Multiple Choice Difficulty: Medium

18. Award: 10.00 points

Compared to a highly economical runner, runners that exhibit poor running economy would require

- a lower VO_{2} at any given running speed.
$\rightarrow \mathrm{O}$ a higher VO_{2} at any given running speed.
the same VO_{2} at any given running speed.None of these answers is correct.

References

Multiple Choice Difficulty: Medium

The treadmill angle (expressed in degrees) can be determined by
visual inspection of the angle of the treadmill.
trigonometric computations.
using a measurement device called an inclinometer.
\rightarrow Both trigonometric computations and using a measurement device called an inclinometer answers are correct.

References

Multiple Choice Difficulty: Medium
20. Award: 10.00 points

The measurement of oxygen consumption during exercise can provide an estimate of metabolic rate. The rationale behind the use of oxygen consumption to estimate metabolic rate is:that measurement of oxygen consumption provides a direct estimate of how much carbohydrate is used a fuel source.
\rightarrow that a direct relationship exists between oxygen consumed and the amount of heat produced in the body.

Othat measurement of oxygen consumption provides a direct estimate of how much fat is used a fuel source.None of these answers is correct.

References

Multiple Choice Difficulty: Medium

During cycle ergometer exercise, net efficiency decreases as the work rate increases. The mechanism to explain this observation is
$\rightarrow \bigcirc$ the relationship between energy expenditure and work rate is curvilinear rather than linear.
the energy requirement of exercise decreases as work rate increases.
that, independent of work rate, oxygen consumption during exercise always increases over time.

None of these answers is correct.

References

Multiple Choice Difficulty: Medium

22. Award: 10.00 points

Calculate the power output when an individual performs 700 joules of work in one minute.
$\rightarrow \bigcirc 11.7$ watts
O 117 watts

- 42,000 watts

O
Power cannot be calculated with the information provided.
1 watt $=1$ joule per second

References

```
Multiple Choice Difficulty: Hard
```

A subject performing a 10-MET activity would have an oxygen consumption of approximately

$$
\begin{aligned}
& \bigcirc 10 \mathrm{ml} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1} . \\
& 25 \mathrm{ml} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1} . \\
& \rightarrow 35 \mathrm{ml} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1} . \\
& \\
& 45 \mathrm{ml} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1} .
\end{aligned}
$$

References

Multiple Choice Difficulty: Hard

24. Award: 10.00 points

Calculate the total amount of work performed in 5 minutes of exercise on a cycle ergometer, given the following:

Resistance on flywheel $=30$ Newtons
Cranking speed $=50$ revolutions per minute
Distance traveled per revolution $=6$ meters
1 joule $=1$ newton-meter

9,000 joules
O 4500 joules
\rightarrow 45,000 joules
Total work performed cannot be calculated given the information above.
1 joule $=1$ Newton-meter

References

Multiple Choice

Compute the power output (watts) during 60 seconds of treadmill exercise, given the following:
Treadmill grade = 10\%
Horizontal speed $=100$ meters per minute
Subject's body weight $=60 \mathrm{~kg}$ (i.e., force $=588.6$ Newtons)
1 joule $=1$ newton-meter
1 watt $=1$ joule per second
$1 \mathrm{kcal}=426.8 \mathrm{kpm}$
$\rightarrow \bigcirc 98.1$ watts
981 watts
○ 5886 watts
Power output cannot be calculated given the information above.

References

Multiple Choice Difficulty: Hard

26. Award: 10.00 points

Calculate net efficiency, given the following:
Resting $\mathrm{VO}_{2}=0.25$ liters per minute
Exercise $\mathrm{VO}_{2}=1.50$ liters per minute
Work rate $=100$ watts (W) or 612 kilopond meters per minute
1 watt = 1 joule per second
$1 \mathrm{kcal}=4186$ joules
1 liter $\mathrm{VO}_{2}=5 \mathrm{kcal}$ or 20,930 joules
〇 approximately 19%
○ approximately 20%
\rightarrow approximately 23%approximately 28%

References

